Vol. 91
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-05-27
Miniaturized Notched Ultra-Wideband Antenna Based on EBG Electromagnetic Bandgap Structure
By
Progress In Electromagnetics Research Letters, Vol. 91, 99-107, 2020
Abstract
This paper proposes a miniaturized monopole ultra-wideband antenna with single-frequency rejection. The recommended antenna size is reduced from 58 × 54 mm2 to 32 × 54 mm2 by the half-cut method. The bandgap design is achieved by placing a dual mushroom type electromagnetic bandgap (EBG) structure on the side of a coplanar waveguide feeding line. The equivalent circuit and surface current distribution were used to analyze and explain the effects of mushroom-like EBG cells and the principle of the half-cut method. Both the prototype antenna and the proposed antenna have been fabricated and tested. From the measurement results, the proposed antenna exhibits good band-stop characteristics and can reject the wireless LAN interference band (5.2 and 5.8 GHz bands). Furthermore, the proposed antenna has considerable gain over the entire operating frequency band except for the notch band.
Citation
Liang Zhang, Shijie Huang, Zhixiang Huang, Changqing Liu, Chao Wang, Zhiwei Wang, Xingchuan Yu, and Xian-Liang Wu, "Miniaturized Notched Ultra-Wideband Antenna Based on EBG Electromagnetic Bandgap Structure," Progress In Electromagnetics Research Letters, Vol. 91, 99-107, 2020.
doi:10.2528/PIERL20041005
References

1. Jiang, D., Y. Xu, R. Xu, et al. "Compact dual-band-notched UWB planar monopole antenna with modified CSRR," Electronics Letters, Vol. 48, No. 20, 1250-1252, 2012.
doi:10.1049/el.2012.2489

2. Ojaroudi, M., G. Kohneshahri, and J. Noory, "Small modified monopole antenna for UWB application," IET Microwaves Antennas & Propagation, Vol. 3, No. 5, 863, 2009.
doi:10.1049/iet-map.2008.0236

3. Sahoo, S., L. P. Mishra, M. N. Mohanty, et al. "Design of compact UWB monopole planar antenna with modified partial ground plane," Microwave & Optical Technology Letters, Vol. 60, No. 3, 578-583, 2018.
doi:10.1002/mop.31010

4. Avez, S. and R. W. Aldhaheri, "A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection," Scientific World Journal, Vol. 2016, 1-7, 2016.

5. Liao, X. J., H. C. Yang, N. Han, et al. "UWB antenna with dual narrow band notches for lower and upper WLAN bands," Electronics Letters, Vol. 46, No. 24, 1593, 2010.
doi:10.1049/el.2010.1943

6. Wang, J., Y. Yin, X. Liu, et al. "Trapezoid UWB antenna with dual band-notched characteristics for WiMAX/WLAN bands," Electronics Letters, Vol. 49, No. 11, 685-686, 2013.
doi:10.1049/el.2013.0934

7. Kim, C., H. Ahn, J. Kim, et al. "A compact 5 GHz WLAN notched bluetooth/UWB antenna," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Toronto, ON, Canada, 2010.

8. Oraizi, H., A. Amini, and M. Karimimehr, "Design of miniaturized UWB log-periodic end-fire antenna using several fractals with WLAN band-rejection," IET Microwaves Antennas & Propagation, Vol. 11, No. 2, 193-202, 2016.
doi:10.1049/iet-map.2015.0716

9. Tang, Z., R. Lian, and Y. Yin, "Differential-fed UWB patch antenna with triple band-notched characteristics," Electronics Letters, Vol. 51, No. 22, 1728-1730, 2015.
doi:10.1049/el.2015.1843

10. Yadav, S., A. K. Gautam, B. K. Kanaujia, et al. "Design of band-rejected UWB planar antenna with integrated Bluetooth band," IET Microwaves Antennas & Propagation, Vol. 10, No. 14, 1528-1533, 2016.
doi:10.1049/iet-map.2016.0118

11. Ghadimi, N. and N. Ojaroudi, "UWB small slot antenna with WLAN frequency band-stop function," Electronics Letters, Vol. 49, No. 21, 1317-1318, 2013.
doi:10.1049/el.2013.2577

12. Li, T., H. Q. Zhai, G. H. Li, et al. "Design of compact UWB band-notched antenna by means of electromagnetic-bandgap structures," Electronics Letters, Vol. 48, No. 11, 608-609, 2012.
doi:10.1049/el.2012.0972

13. Gheethan, A. A. and D. E. Anagnostou, "Dual band-reject UWB antenna with sharp rejection of narrow and closely-spaced bands," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2071-2076, April 2012.
doi:10.1109/TAP.2012.2186221

14. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 14, No. 1, 100-103, 2015.
doi:10.1109/LAWP.2014.2356135

15. Singh, R., G. K. Pandey, M. Agarwal, et al. "Compact planar monopole antenna with dual band notched characteristics using T-shaped stub and rectangular mushroom type electromagnetic band gap structure for UWB and Bluetooth applications," Wireless Personal Communications, Vol. 78, No. 1, 215-230, 2014.
doi:10.1007/s11277-014-1747-6

16. Peng, L., B. J. Wen, X. F. Li, et al. "CPW fed UWB antenna by EBGs with wide rectangular notched-band," IEEE Access, Vol. 4, 9545-9552, 2016.
doi:10.1109/ACCESS.2016.2646338

17. Peng, L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Transactions on Microwave Theory & Techniques, Vol. 59, No. 4, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090

18. Mandal, T. and S. Das, "Design of a CPW-fed UWB printed antenna with dual notch band using mushroom structure," International Journal of Microwave & Wireless Technologies, 1-8, 2017.

19. Gao, G. P., B. Hu, and J. S. Zhang, "Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method," IEEE Antennas & Wireless Propagation Letters, Vol. 12, No. 1, 567-570, 2013.
doi:10.1109/LAWP.2013.2259790