Vol. 92
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-29
Single-Substrate Double-Side High Selectivity Frequency Selective Surface
By
Progress In Electromagnetics Research Letters, Vol. 92, 85-92, 2020
Abstract
Frequency selective surface is a key component in applications such as communication antenna and remote sensing radiometer. One of the core parameters is selectivity, which is usually realized using a multi-layer structure or through a complicated 3D structure. These methods, however, would impose much challenge on alignment or fabrication. This paper proposes a single-substrate and combined-united array to realize a high selectivity frequency selective surface. The unit cell is a combined pattern of cross dipole and square loop to generate double transmission zeroes out of the passband. Both sides of the substrate are printed with the same pattern to enhance the selectivity. Such a structure enables easy fabrication and assembly by avoiding using multi-substrates. A prototype in the Ku-band demonstrates that both sides of the passband show high selectivity.
Citation
Xiaofan Yang, Liandong Wang, Xujian Shen, Xiaoming Liu, Tao Qi, and Yixin Zhou, "Single-Substrate Double-Side High Selectivity Frequency Selective Surface," Progress In Electromagnetics Research Letters, Vol. 92, 85-92, 2020.
doi:10.2528/PIERL20041104
References

1. Li, Y., P. Ren, and Z. Xiang, "A dual-passband frequency selective surface for 5G communication," IEEE Antennas and Wireless Propagation Letters , Vol. 18, 2597-2601, 2019.
doi:10.1109/LAWP.2019.2944936

2. Liu, X., Y. Wang, T. Zhang, et al. "A compact multi-band quasi-optical system for plasma detection," IEEE Transactions on Antennas and Propagation, Vol. 68, 4916-4924, 2020.
doi:10.1109/TAP.2020.2970126

3. Li, X., X. Liu, K. Ronald, et al. "Investigation of frequency-selective surfaces for a THz gyromultiplier output system," IEEE Transactions on Electron Devices, Vol. 64, 4678-4685, 2017.
doi:10.1109/TED.2017.2746718

4. Lawrence, H., N. Bormann, A. J. Geer, et al. "Evaluation and assimilation of the microwave sounder MWHS-2 onboard FY-3C in the ECMWF numerical weather prediction system," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, 3333-3349, 2017.
doi:10.1109/TGRS.2018.2798292

5. Shen, Y., D. Chen, Q. Wei, et al. "183-GHz frequency selective surface using aligned eight-layer microstructure," IEEE Transactions on Electron Devices, Vol. 39, 1612-1615, 2018.

6. Tao, K., B. Li, Y. Tang, et al. "Multi-layer tri-band frequency selective surface using stepped- and uniform-impedance resonators," Electronics Letters, Vol. 52, 583-585, 2016.
doi:10.1049/el.2016.0324

7. Yu, Z., X. Yang, J. Zhu, et al. "Dual-band three-dimensional FSS with high selectivity and small band ratio," Electronics Letters, Vol. 55, 798-799, 2019.
doi:10.1049/el.2019.1283

8. Lv, M., M. Huang, and Z. Wu, "Design of multi-band frequency selective surfaces using multi-periodicity combined elements," Journal of Systems Engineering and Electronics, Vol. 20, 675-680, 2009.

9. Naseri, P., F. Khosravi, P. Mousavi, et al. "Antenna-filter-antenna-based transmit-array for circular polarization application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1389-1392, 2017.
doi:10.1109/LAWP.2016.2638469

10. Li, Y., L. Li, Y. Zhang, et al. "Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures," IEEE Transactions on Antennas and Propagation, Vol. 63, 133-141, 2020.
doi:10.1109/TAP.2014.2367523

11. Mollaei, M. S. M., "Narrowband configurable polarization rotator using frequency selective surface based on circular substrate-integrated waveguide cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1923-1926, 2017.
doi:10.1109/LAWP.2017.2688703

12. Varikuntla, K. K. and R. Singaravelu, "Ultrathin design and implementation of planar and conformal polarisation rotating frequency selective surface based on SIW technology," IET Microwaves, Antennas & Propagation, Vol. 12, 1939-1947, 2018.
doi:10.1049/iet-map.2017.0996

13. Zhu, J., Z. Hao, C. Wang, et al. "Dual-band 3-D frequency selective surface with multiple transmission zeros," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 596-600, 2019.
doi:10.1109/LAWP.2019.2897369

14. Lee, I. G. and I. P. Hong, "3D frequency selective surface for stable angle of incidence," Electronics Letters, Vol. 50, 423-424, 2014.
doi:10.1049/el.2014.0053

15. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," Journal of Applied Physics, Vol. 124, paper ID:234901, 2018.
doi:10.1063/1.5049204

16. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 912-915, 2017.
doi:10.1109/LAWP.2016.2614498

17. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, et al. "Low-cost non-uniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888

18. Abbaspour-Tamijani, A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Transactions on Microwave Theory and Technology, Vol. 52, 1781-1789, 2004.
doi:10.1109/TMTT.2004.831572

19. Lalbakhsh, P., B. Zaeri, and A. Lalbakhsh, "An improved model of ant colony optimization using a novel pheromone update strategy," IEICE Transactions on Information and Systems, Vol. 96, 2309-2318, 2013.
doi:10.1587/transinf.E96.D.2309

20. Jamshidi, M. B., A. Lalbakhsh, S. Lotfi, et al. "A neuro-based approach to designing a Wilkinson power divider," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, 1-10, 2020.
doi:10.1002/mmce.22091

21. Jamshidi, M. B., A. Lalbakhsh, B. Mohamadzade, et al. "A novel neural-based approach for design of microstrip filters," AEU --- International Journal of Electronics and Communications, Vol. 110, 152847, 2019.
doi:10.1016/j.aeue.2019.152847

22. Tang, C., X. Liu, H. Wang, et al. "Design and research of highly selective frequency selective surfaces," Proceeding of the Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi'an, China, Oct. 16–19, 2017.

23. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, et al. "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, 1916-1921, 2019.
doi:10.1109/TAP.2019.2891232

24. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam reconfigurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, 86-102, 2020.
doi:10.1080/09205071.2019.1688693

25. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

26. Liu, X., Z. Li, C. Tang, et al. "Double-square and gridded-square loop frequency-selective surface in the K-band," Microwave and Optical Technology Letters, Vol. 60, 1136-1142, 2018.
doi:10.1002/mop.31126

27. Liu, X. and J. Yu, "Characterization of the dielectric properties of water and methanol in the D-band using a quasi-optical spectroscopy," Scientific Reports, Vol. 9, paper ID:18962, 2019.
doi:10.1038/s41598-019-55144-4

28. Lalbakhsh, A., U. A. Muhammad, P. E. Karu, et al. "Multi-objective particle swarm optimization for the realization of a low profile bandpass frequency selective surface," 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, TAS, Australia, Nov. 9–12, 2017.