Vol. 92
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-07-05
A Compact Phase Shifter with Wide Phase Range Using Loaded Transmission Line
By
Progress In Electromagnetics Research Letters, Vol. 92, 109-116, 2020
Abstract
This paper presents a 90° broadband compact phase shifter which employs loade λ/2 transmission line. By adding an H shaped open stub loaded transmission line, the bandwidth of the phase shifter is broadened. Detailed theoretical analysis and circuit configuration are presented to explain the mechanism. The proposed phase shifter is fabricated and measured to validate the design principle. The simulated and measured results show that the proposed phase shifter achieves 6.6 to 19.4 GHz bandwidth with low phase instability ±5°, very low insertion loss (0.3 dB in 7.5-15.2GHz), high return loss (10 dB), and a compact size (5.8cm*6.1cm). Good agreements are observed between the measured and simulated results with small phase deviation. Moreover, the configuration of the proposed phase shifter is simple in both design and fabrication which makes the design suitable for actual applications.
Citation
Ting Wu, Juan Chen, and Peng-Fei Wu, "A Compact Phase Shifter with Wide Phase Range Using Loaded Transmission Line," Progress In Electromagnetics Research Letters, Vol. 92, 109-116, 2020.
doi:10.2528/PIERL20052002
References

1. Zheng, S. Y., W. S. Chan, and K. F. Man, "Broadband phase shifter using loaded transmiossion line," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 498-500, 2010.
doi:10.1109/LMWC.2010.2050868

2. Gao, B. and Y. Xin, "Improved miniaturized wide-band 90-degree schiffman phase shifter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 493-499, 2009.
doi:10.1163/156939309787612374

3. Ebrahimpouri, M., S. Nikmehr, and A. Pourziad, "Broadband compact SIW phase shifter using omega particles," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 11, 748-750, 2014.
doi:10.1109/LMWC.2014.2350692

4. Nafe, A. and A. Shamin, "An integrable SIW phase shifter in a partially magnetized ferrite lTCC package," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 7, 2264-2274, 2015.
doi:10.1109/TMTT.2015.2436921

5. Peng, H., X. Xia, S. O. Tatu, and T. Yang, "An improved broadband siw phase shifter with embedded air strips," Progress In Electromagnetics Research C, Vol. 67, 185-192, 2016.
doi:10.2528/PIERC16080904

6. Padilla, P., J. F. Valenzuela-Valdes, J. L. Padilla, et al. "Broadband electronically tunable reflection-based phase shifter for active-steering microwave reflectarray systems in Ku-band," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 12, 1545-1551, 2016.
doi:10.1080/09205071.2016.1202786

7. Wu, K., T. Djerafi, and O. Kramer, "Dual-layered substrate-integrated waveguide six-port with wideband double-stub phase shifter," IET Microw., Antennas Propag., Vol. 6, No. 15, 1704-1709, 2012.
doi:10.1049/iet-map.2012.0272

8. Yeung, S. H., T. K. Sarkar, M. Salazar-Palma, and A. Garcia-Lamperez, "A multisection phase correcting network for broadband quadrature power splitter design," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 9, 468-470, 2013.
doi:10.1109/LMWC.2013.2274035

9. Ting, H.-L., S.-K. Hsu, and T.-L.Wu, "Broadband eight-port forward-wave directional couplers and four-way differential phase shifter," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 5, 2161-2169, 2018.
doi:10.1109/TMTT.2018.2811478

10. Kuo, C.-J., C.-Y. Liou, et al. "A novel wideband circularly polarized dual-fed slot antenna with microstrip feeding network," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 2, 175-187, 2016.
doi:10.1080/09205071.2015.1098574

11. Honari, M. M., R. Mirzavand, and P. Mousavi, "Design of wideband phase shifters with low phase error using parallel inductor and capacitor for wideband antenna applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 7, 716-726, 2017.
doi:10.1080/09205071.2017.1308838

12. Yang, T., M. Ettorre, and R. Saulean, "Novel phase shifter design based on substrate integrated waveguide technology," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 10, 518-520, 2012.
doi:10.1109/LMWC.2012.2217122

13. Abbosh, A., "Ultra-wideband phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1935-1941, 2007.
doi:10.1109/TMTT.2007.904051

14. Ibrahim, S. and M. Bialkowski, "Widebang butler matrix in microstrip-slot technology," Proc. Asia-Pacific Microw. Conf., 2104-2107, Singapore, 2009.

15. Huang, Y., X. Li, J. Bao, et al. "A 1.7–2.7-GHz 4-bit phase shifter based on packaged RF MEMS switches," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 5, 553-565, 2016.
doi:10.1080/09205071.2015.1090347

16. Horestani, A. K., F. Sadeghikia, and Z. Shaterian, "A broadband fixed phase shifter in substrate integrated waveguide technology," 27th Iranian Conference on Electrical Engineering (ICEE 2019), 1576-1578, 2019.
doi:10.1109/IranianCEE.2019.8786700