Vol. 7
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-06-30
Simultaneous TE and TM Surface Polaritons in a Bilayer Composed of a Single-Negative Materials
By
Progress In Electromagnetics Research M, Vol. 7, 179-192, 2009
Abstract
We investigate the dispersion properties of both TE and TM surface polariton modes formed at the surfaces of a bilayer composed of a single-negative materials. The dispersion curves of surface polaritons modes is found to consist of two branches, and it is shown that TE and TM surface polaritons may have a simultaneous mode. The characteristics of TE and TM surface polaritons modes (the frequency, localization position, ...) are shown to depend on the relative thicknesses of two single-negative layers of the bilayer. We find that the TE and TM surface polariton modes propagate in the same directions along the interfaces of the bilayer in the most cases. Nevertheless, the TE and TM surface polariton modes may have opposite directions of propagation for appropriate thicknesses of two single-negative layers. This can be interesting especially in the case of simultaneous TE and TM surface polariton mode, for which the structure acts as a polarizing beam splitter.
Citation
Samad Roshan Entezar, "Simultaneous TE and TM Surface Polaritons in a Bilayer Composed of a Single-Negative Materials," Progress In Electromagnetics Research M, Vol. 7, 179-192, 2009.
doi:10.2528/PIERM09051102
References

1. Ziolkowski, R. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

2. Oliner, A. A., "A periodic-structure negative-refractive-index medium without resonant elements," IEEE-APS/URSI Int'l Symp. Digest, 41, June 2002.

3. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett., Vol. 14, 68-70, 2004.
doi:10.1109/LMWC.2003.822563

4. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propagat., Vol. 52, 1159-1166, 2004.
doi:10.1109/TAP.2004.827249

5. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using a left-handed transmission line," IEEE Trans. Microw. Theory Tech., Vol. 52, 798-804, 2004.
doi:10.1109/TMTT.2004.823541

6. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxially anisotropic left-handed materials," Progress In Electromagnetics Research, PIER 70, 37-52, 2007.

7. Chen, L., W. Ding, X. J. Dang, and C. H. Liang, "Counter-propagating energy-flows in nonlinear left-handed metamaterials," Progress In Electromagnetics Research, PIER 70, 257-267, 2007.

8. Xu, W., L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, "Left-handed material effects on waves modes and resonant frequencies: Filled waveguide structures and substrate-loaded patch antennas," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2033-2047, 2005.
doi:10.1163/156939305775570459

9. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

10. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

11. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

13. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

14. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line," IEEE-APS Int'l Symp. Digest, Vol. 2, 412-415, 2002.

15. Lin, I. H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary duad-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Techniques, Vol. 52, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

16. Liang, L., B. Li, S.-H. Liu, and C.-H. Liang, "A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays," Progress In Electromagnetics Research, PIER 65, 275-286, 2006.

17. Hamid, A.-K., "Axially slotted antenna on a circular or elliptic cylinder coated with metamaterials," Progress In Electromagnetics Research, PIER 51, 329-341, 2005.

18. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, PIER 65, 261-273, 2006.

19. Alu, A. and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, 199-210, 2004.
doi:10.1109/TMTT.2003.821274

20. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Anomalous tunneling and transparency," IEEE Trans. on Antennas and Propagation, Vol. 51, 2558-2570, 2003.
doi:10.1109/TAP.2003.817553

21. Dai, X.-W., M. Yao, X.-J. Dang, and C.-H. Liang, "Transparency of a pair of epsilon-negative slab and mu-negative slab," Progress In Electromagnetics Research, PIER 69, 237-246, 2007.

22. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, PIER 51, 49-63, 2005.

23. Agranovich, V. M. and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam, 1982.

24. McGilp, J. F., D. Weaire, and C. H. Patterson, Epioptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces, Springer-Verlag, Berlin, 1995.

25. Raether, H., Surface Plasmons, Springer-Verlag, Heidelberg, 1988.

26. Camley, R. E. and D. L. Mills, "Surface polaritons on uniaxial antiferromagnets," Phys. Rev. B, Vol. 26, 1280-1287, 1982.
doi:10.1103/PhysRevB.26.1280

27. Ruppin, R., "Surface polaritons of left-handed medium," Phys. Lett. A, Vol. 277, 61-64, 2000.
doi:10.1016/S0375-9601(00)00694-0

28. Ruppin, R., "Surface polaritons of left-handed material slab," J. Phys: Condens. Matter, Vol. 13, 1811-1819, 2001.
doi:10.1088/0953-8984/13/9/304

29. Bespyatykh, Y. I., A. S. Bugaev, and I. E. Dikshtein, "Surface polaritons in composite media with time dispersion of permittivity and permeability," Phys. Sol. State, Vol. 43, 2043-2047, 2001.

30. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

31. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

32. Yeh, P., A. Yariv, and C. S. Hong, , Vol. 67, 423, J. Opt. Soc. Am., 1977.

33. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., Vol. 216, 398-410, 1968.

34. Shadrivov, I. V., R. W. Ziolkowski, A. A. Zharov, and Y. S. Kivshar, "Excitation of guided waves in layered structures with negative refraction," Opt. Express, Vol. 13, 481-492, 2005.
doi:10.1364/OPEX.13.000481

35. Dragila, R., B. Luther-Davies, and S. Vukovic, "High transparency of classically opaque metallic films," Phys. Rev. Lett., Vol. 55, 1117-1120, 1985.
doi:10.1103/PhysRevLett.55.1117

36. Vukovic, S. M., N. B. Aleksic, and D. V. Timotijevic, "Anomalous lateral beam shift and total absorption due to excitation of surface waves in materials with negative refraction," Eur. Phys. J. D, Vol. 39, 295-301, 2006.
doi:10.1140/epjd/e2006-00092-4

37. Galli, M., D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, M. Belotti, and Y. Chen, "Excitation of radiative and evanescent defect modes in linear photonic crystal waveguides," Phys. Rev. B, Vol. 70, 081307-4, 2004.
doi:10.1103/PhysRevB.70.081307

38. Galli, M., M. Belotti, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B, Vol. 72, 125322-10, 2005.
doi:10.1103/PhysRevB.72.125322