Vol. 8
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-09-18
Polarized Photon Generation for the Transport of Quantum States: a Closed-System Simulation Approach
By
Progress In Electromagnetics Research M, Vol. 8, 249-261, 2009
Abstract
A novel approach for logic state dependent generation of polarized photon is proposed, where the logic states '0' and '1' are represented by two sub-spaces in the Hilbert space of the hyperfine states of rubidium atom (87Rb). Each subspace consists of a ground state, an intermediate state and an excited state. The atom is placed at the center of a two-mode cavity, and the cavity modes correspond to frequencies of the generated photon. Photon generation process involves raising the atom to the excited state within the corresponding subspace and letting it decay back to the initial (ground) state, emitting thereby a photon of logic state dependent polarization. In order to keep the driving laser frequencies far off from the cavity mode frequencies, the atom is raised to the excited state in two steps --- first from the ground state to the intermediate state and then from the intermediate state to the excited state. Polarization states of the photon represent the logic states, and can be used to transport logic from one node to another of the quantum network.
Citation
Md. Mijanur Rahman, and Pankaj Choudhury, "Polarized Photon Generation for the Transport of Quantum States: a Closed-System Simulation Approach," Progress In Electromagnetics Research M, Vol. 8, 249-261, 2009.
doi:10.2528/PIERM09081603
References

1. Monroe, C., D. N. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, "Demonstration of a fundamental quantum logic gate," Phys. Rev. Lett., Vol. 75, 4714-4717, 1995.
doi:10.1103/PhysRevLett.75.4714

2. Loss, D. and D. P. DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A, Vol. 57, 120-126, 1998.
doi:10.1103/PhysRevA.57.120

3. Fan, X. D., P. Palinginis, S. Lacey, H. L. Wang, and M. C. Longeran, "Coupling semiconductor nanocrystals to a fused-silica microsphere --- A quantum-dot microcavity with extremely high Q factors," Opt. Lett., Vol. 25, 1600-1602, 2000.
doi:10.1364/OL.25.001600

4. Chen, P., C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, "Theory of quantum optical control of a single spin in a quantum dot," Phys. Rev. B, Vol. 69, 075320-075327, 2004.
doi:10.1103/PhysRevB.69.075320

5. Blinov, B. B., D. L. Moehring, L.-M. Duan, and C. Monroe, "Observation of entanglement between a single trapped atom and a single photon," Nature, Vol. 428, 153-157, 2004.
doi:10.1038/nature02377

6. Mijanur Rahman, M. and P. K. Choudhury, "A review of the state-of-the-art of particle physics with extra dimensions," Asian J. Phys., Vol. 17, 263-272, 2008.

7. Cirac, J. I. and P. Zoller, "Quantum computations with cold trapped ions," Phys. Rev. Lett., Vol. 74, 4091-4094, 1995.
doi:10.1103/PhysRevLett.74.4091

8. Cirac, J. I., P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum state transfer and entanglement distribution among distant nodes in a quantum network," Phys. Rev. Lett., Vol. 78, 3221-3224, 1997.
doi:10.1103/PhysRevLett.78.3221

9. Cirac, J. I., A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A, Vol. 59, 4249-4254, 1999.
doi:10.1103/PhysRevA.59.4249

10. Scherer, A., O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, "Photonic crystals for confining, guiding, and emitting light," IEEE Trans. on Nanotech., Vol. 1, 4-11, 2002.
doi:10.1109/TNANO.2002.1005421

11. De Sousa, R. and S. Das Sarma, "Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots," Phys. Rev. B, Vol. 68, 115322-115334, 2003.
doi:10.1103/PhysRevB.68.115322

12. Yao, W., R. B. Lin, and L. J. Sham, "Nanodot-cavity electrodynamics and photon entanglement," Phys. Rev. Lett., Vol. 92, 217402-217405, 2004.
doi:10.1103/PhysRevLett.92.217402

13. Villa-Villa, F., J. A. Gaspar-Armenta, and A. Mendoza-Suarez, "Surface modes in one dimensional photonic crystals that include left handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 485-499, 2007.
doi:10.1163/156939307779367323

14. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W. Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects," Progress In Electromagnetics Research, PIER 80, 421-430, 2008.

15. Abd-Rahman, F., P. K. Choudhury, D. Kumar, and Z. Yusoff, "An analytical investigation of four-layer dielectric optical fibers with au nano-coating --- A comparison with three-layer optical fibers," Progress In Electromagnetics Research, PIER 90, 269-286, 2009.

16. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, PIER 91, 319-332, 2009.

17. Watanabe, K. and K. Yasumoto, "Accuracy improvement of the Fourier series expansion method for floquet-mode analysis of photonic crystal waveguides," Progress In Electromagnetics Research, PIER 92, 209-222, 2009.

18. Lee, H.-S., "A photon modeling method for the characterization of indoor optical wireless communication," Progress In Electromagnetics Research, PIER 92, 121-136, 2009.

19. Gardiner, C. W., "Driving a quantum system with the output field from another driven quantum system," Phys. Rev. Lett., Vol. 70, 2269-{2272, 1993.
doi:10.1103/PhysRevLett.70.2269

20. Carmichael, H. J., "Quantum trajectory theory for cascaded open systems," Phys. Rev. Lett., Vol. 70, 2273-2276, 1993.
doi:10.1103/PhysRevLett.70.2273

21. Yao, W., R. B. Lin, and L. J. Sham, "Theory of control of the spin-photon interface for quantum networks," Phys. Rev. Lett., Vol. 95, 030504-030507, 2005.
doi:10.1103/PhysRevLett.95.030504

22. Mijanur Rahman, M. and P. K. Choudhury, "Nanophotonic waveguidance in quantum networks --- A simulation approach for quantum state transfer," Optik, in press.

23. Steck, D. A., "Rubidium-87 D line data,", available online at http://steck.us/alkalidata (revision 2.1.1, April 30, 2009).

24. Wootters, W. K. and W. H. Zurek, "A single quantum cannot be cloned," Nature, Vol. 299, 802-803, 1982.
doi:10.1038/299802a0

25. Jaynes, E. T. and F. W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc. IEEE, Vol. 51, 89-109, 1963.
doi:10.1109/PROC.1963.1664

26. Whalen, S. J. and H. J. Carmichael, "Photon correlation functions and photon blockade in two-mode cavity QED," Symposium of the Dodd-walls Centre for Quantum Science and Technology, Paper TuP26, Queenstown (New Zealand), December 9-11, 2008.

27. Wang, S. J., D. Zhao, H. G. Luo, L. X. Cen, and C. L. Jia, "Exact solution to the von Neumann equation of the quantum characteristic function of the two-level Jaynes-Cummings model," Phys. Rev. A, Vol. 64, 052102-052105, 2001.
doi:10.1103/PhysRevA.64.052102