Vol. 20
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-06
Transmission Properties of Stacked SRR Metasurfaces in Free Space
By
Progress In Electromagnetics Research M, Vol. 20, 1-11, 2011
Abstract
In this paper, transmission properties of stacked split ring resonators metasurfaces in free space and under normal incidence are investigated experimentally and numerically. Emphasis is put on studying the interaction between adjacent SRRs metasurfaces. The thorough analysis of the electromagnetic fields shows that both magnetic and electric coupling can occur between adjacents metasurfaces for vertical and horizontal polarization. In addition, we found that all propagating bands within our spectral window (up to 20 GHz) support right-handed behaviour. Both simulation and experiment results in the microwave regime are in good agreement.
Citation
Mariem Aznabet, Miguel Navarro-Cia, Miguel Beruete, Francisco J. Falcone, Mario Sorolla Ayza, Otman El Mrabet, and Mohammad Essaaidi, "Transmission Properties of Stacked SRR Metasurfaces in Free Space," Progress In Electromagnetics Research M, Vol. 20, 1-11, 2011.
doi:10.2528/PIERM11052903
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stew J. B., A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

2. Smith, D. R., W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Marques, R., F. Martin, M. Sorolla, and , Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications, Wiley, New York, 2008.

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 15, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Shamonina , E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magneto-inductive waveguide," Electron Lett., Vol. 38, No. 8, 371-373, 2002.
doi:10.1049/el:20020258

6. Shamonina, , E., E. E. V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring," J. Appl. Phys., Vol. 92, No. 7, 6252-6261, 2002.
doi:10.1063/1.1510945

7. Shamonina, E. and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: Components for a one-dimensional waveguide," J. Phys. D, Vol. 37, No. 3, 362-367, 2004.
doi:10.1088/0022-3727/37/3/008

8. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, New York, 2009.

9. Shadrivov, I. V., A. N. Reznik, and Y. S. Kivshar, "Magnetoin-ductive waves in arrays of split-ring resonators," Physica B: Condensed Matter, Vol. 394, No. 2, 180-183, 2007.
doi:10.1016/j.physb.2006.12.038

10. Shadrivov, I. V., A. A. Zharov, N. A. Zharova, and Y. S. Kivshar, "Nonlinear magnetoinductive waves and domain walls in composite metamaterials," Photonics Nanostruct.: Fundam. Appl., Vol. 4, 69-74, 2006.
doi:10.1016/j.photonics.2006.01.005

11. Freire, M. J., R. Marques, F. Medina, M. A. G. Laso, and F. Martin, "Planar magnetoinductive wave tranducers: Theory and applications," App. Phys. Lett., Vol. 85, No. 19, 4439-4441, 2004.
doi:10.1063/1.1814428

12. Freire, M. J. and R. Marques, "Planar magnetoinductive lens for three-dimensional subwavelength imaging," Appl. Phys. Lett., Vol. 86, No. 18, 182505-182507, 2005.
doi:10.1063/1.1922074

13. Syms, R. R. A., E. Shamonina, and L. Solymar, "Near-field image transfer by magneto-inductive arrays: A modal perspective," Metamaterials., Vol. 5, 8-25, 2011.
doi:10.1016/j.metmat.2010.11.002

14. Shamonin, M., E. Shamonina, V. Kalinin, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring ," J. Appl. Phys., Vol. 95, No. 7, 377-378, 2004.
doi:10.1063/1.1652251

15. Qi, Y., B. Hou, and W.Wen, "Band gaps from ring resonators and structural periodicity," J. Phys. D: Appl. Phys., Vol. 38, 590-595, 2005.
doi:10.1088/0022-3727/38/4/011

16. Radkovskaya, A., E. Tatartschuk, O. Sydoruk, E. Shamonina, C. J. Stevens, D. J. Edwards, and L. Solymar, "Surface waves at an interface of two metamaterial structures with interelement coupling," Phys. Rev. B., Vol. 82, 045430, 2010.
doi:10.1103/PhysRevB.82.045430

17. Aznabet, M., M. Beruete, M. Navarro-Cia, O. El Mrabet, F. Falcone, N. Aknin, M. Essaaidi, and M. Sorolla, "Metamaterial multiresonances in waveguide and metasurfaces," Microwave Opt. Technol. Lett., Vol. 50, No. 11, 2825-2827, 2008.
doi:10.1002/mop.23812

18. Navarro-Cia, , M., M. Aznabet, M. Bereute, F. Falcone, O. ElMrabet, M. Sorolla, M. Essaaidi, "Stacked complementary metasurfaces for ultraslow microwave metamaterials," Appl. Phys. Lett., Vol. 96, 164103-164105, 2010.
doi:10.1063/1.3413958

19. Marques, R., F. Mesa, J. Martel, and F. Median, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

20. Balanis, C., Antenna Theory Analysis and Design, Wiley, New York, 1997.

21. Aznabet, M., M. Navarro-Cia, S. A. Kuznetsov, A. V. Gelfand, N. I. Fedorinina, Y. G. Goncharov, M. Beruete, O. El Mrabet, and M. Sorolla, "Polypropylene-substrate-based SRR- and CSRR-metasurfaces for submillimeter waves," Opt. Express, Vol. 16, No. 22, 18312-18318, 2008.
doi:10.1364/OE.16.018312

22. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520

23. Navarro-Cia, M., M. Beruete, M. Sorolla, I. Campillo, "Negative refraction in a prism made of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 2, 560-566, 2008.
doi:10.1364/OE.16.000560

24. Beruete, M., M. Aznabet, M. Navarro-Cia, O. El Mrabet, F. Falcone, N. Aknin, M. Essaaidi, and M. Sorolla, "Electroinductive waves role in left-handed stacked complementary split rings resonators," Opt. Express, Vol. 17, No. 3, 1274-12781, 2009.
doi:10.1364/OE.17.001274

25. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

26. Cheng, Y. Z., H. L. Yang, Y. Nie, R. Z. Gong, and Z. Z. Cheng, "Investigation of negative index properties of planar metamaterials based on split-ring pairs," Applied Physics A, Vol. 103, 989-994, 2011.
doi:10.1007/s00339-011-6376-2