Vol. 23
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-03-05
GPU-Based ω-k Tomographic Processing by 1D Non-Uniform FFTs
By
Progress In Electromagnetics Research M, Vol. 23, 279-298, 2012
Abstract
We present an ω-k approach based on the use of a 1D Non-Uniform FFT (NUFFT) routine, of NER (Non-Equispaced Results) type, programmed on a GPU in CUDA language, amenable to real-time applications. A Matlab main program links, via mex files, a compiled parallel (CUDA) routine implementing the NUFFT. The approach is shown to be an extension of an already developed parallel algorithm based on standard backprojection processing to account also for near-field data. The implementation of the GPU-based, parallel NUFFT routine is detailed and the computational advantages of the developed approach are highlighted against other confronted sequential or parallel (on multi-core CPU) procedures. Furthermore, the benefits of the $\omega$-k, NUFFT-based processing are pointed out by both comparing its accuracy and computational convenience against other interpolators, and by providing numerical results. By comparing the computational performance of the algorithm against a multi-core, Matlab implementation, the speedup has been about 20 for a medium size image. The performance of the approach has been pointed out in the applicative case of vegetation imaging against experimental data of a boxtree (Buxus tree), also under a source of temporal decorrelation (wind).
Citation
Amedeo Capozzoli, Claudio Curcio, and Angelo Liseno, "GPU-Based ω-k Tomographic Processing by 1D Non-Uniform FFTs ," Progress In Electromagnetics Research M, Vol. 23, 279-298, 2012.
doi:10.2528/PIERM11083003
References

1. Stolt, R., "Migration by Fourier transform techniques," Geophys., Vol. 43, No. 1, 49-76, 1978.
doi:10.1190/1.1440826

2. Cafforio, C., C. Prati, and F. Rocca, "SAR data focusing using seismic migration techniques," IEEE Trans. Aerosp. Electron. Syst., Vol. 27, No. 2, 194-207, Mar. 1991.
doi:10.1109/7.78293

3. Reigber, A., A. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," IEE Proc. - Radar Sonar Navig., Vol. 153, No. 3, 301-310, Jun. 2006.
doi:10.1049/ip-rsn:20045087

4. Shin, H.-S. and J.-T. Lim, "Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging," IEEE Trans. Geosci. on Remote Sens. Lett., Vol. 6, No. 2, 312-316, Apr. 2009.
doi:10.1109/LGRS.2008.2011924

5. Hamasaki, T., L. Ferro-Famil, E. Pottier, and M. Sato, "Applications of polarimetric interferometric ground-based SAR (GB-SAR) system to environment monitoring and disaster prevention," Proc. of the Europ. Radar Conf., 29-32, Paris, France, Oct. 6-7, 2005.

6. Sun, B., J. Chen, C.-S. Li, and Y.-Q. Zhou, "FA-ScanSAR: Full aperture scanning pulse by pulse for the nearspace slow-moving platform borne SAR," Progress In Electromagnetics Research B, Vol. 25, 23-37, 2010.
doi:10.2528/PIERB10061304

7. Chen, H., R. Wu, J. Liu, and Z. Han, "GPR migration imaging algorithm based on NUFFT," PIERS Online, Vol. 6, No. 1, 16-20, 2010.
doi:10.2529/PIERS090907050824

8. Song, J., Q. H. Liu, P. Torrione, and L. Collins, "Two-dimensional and three-dimensional NUFFT migration method for landmine detection using ground-penetrating radar," IEEE Trans. on Geosci. Remote Sens., Vol. 44, No. 6, 1462-1469, 2006.
doi:10.1109/TGRS.2006.870412

9. Bamler, R., "A comparison of range-doppler and wavenumber domain SAR focusing algorithms," IEEE Trans. on Geosci. Remote Sens., Vol. 30, No. 4, 706-713, Jul. 1992.
doi:10.1109/36.158864

10. Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong, "Precision SAR processing using chirp scaling," IEEE Trans. on Geosci. Remote Sens., Vol. 32, No. 4, 786-799, Jul. 1994.
doi:10.1109/36.298008

11. Hanssen, R. and R. Bamler, "Evaluation of interpolation kernels for SAR interferometry," IEEE Trans. on Geosci. Remote Sens., Vol. 37, No. 1, 318-321, Jan. 1999.
doi:10.1109/36.739168

12. Li, A., "Algorithms for the implementation of Stolt interpolation in SAR processing," Proc. of the IEEE Geosci. Remote Sens. Int. Symp., 360-362, Houston, TX, May 26-29, 1992.

13. Fourmont, K., "Non-equispaced fast Fourier transforms with applications to tomography," J. Fourier Anal. Appl., Vol. 9, No. 5, 431-450, 2003.
doi:10.1007/s00041-003-0021-1

14. Greengard, L. and J.-Y. Lee, "Accelerating the nonuniform fast Fourier transform," SIAM Review, Vol. 46, No. 3, 443-454, 2004.
doi:10.1137/S003614450343200X

15. Subiza, B., E. Gimeno-Nieves, J. M. Lopez-Sanchez, and J. Fortuny-Guasch, "An approach to SAR imaging by means of non-uniform FFT's," Proc. of the IEEE Geosci. Remote Sens. Int. Symp., 4089-4091, Toulouse, France, Jul. 21-25, 2003.

16. Li, S., H. Sun, B. Zhu, and R. Liu, "Two-dimensional NUFFT-based algorithm for fast near-field imaging," IEEE Antennas Wireless Prop. Lett., Vol. 9, 814-817, 2010.
doi:10.1109/LAWP.2010.2069550

17. Huang, Y., Y. Liu, Q. H. Liu, and J. Zhang, "Improved 3-D GPR detection by NUFFT combined with MPD method," Progress In Electromagnetics Research, Vol. 103, 185-199, 2010.
doi:10.2528/PIER10021005

18. Callison, R. J., "Spotlight Synthetic Aperture Radar (SAR) system and method for generating a SAR map in real-time using a modified polar format algorithm,", US Patent, No. 7,511,656 B2, Mar. 31, 2009.

19. Di Bisceglie, M., M. Di Santo, C. Galdi, R. Lanari, and N. Ranaldo, "Synthetic aperture radar processing with GPGPU," IEEE Signal Proc. Mag., Vol. 27, No. 2, 69-78, Mar. 2010.
doi:10.1109/MSP.2009.935383

20. Sharma, G. and J. Martin, "MATLABR?: A language for parallel computing," Int. J. Parallel Prog., Vol. 37, No. 1, 3-36, 2009.
doi:10.1007/s10766-008-0082-5

21. Rosario-Torres, S. and M. Velez-Reyes, "Speeding up the MATLABTM hyperspectral image analysis toolbox using GPUs and the Jacket toolbox," Proc. of the Hyperspectral Image and Signal Proc. Workshop: Evolution in Remote Sens., 1-4, Grenoble, France, Aug. 26-28, 2009.

22. Kirk, D. B. and W. W. Hwu, Programming Massively Parallel Processors, Morgan Kaufmann, Burlington, MA, 2010.

23. Jiang, W.-Q., M. Zhang, and Y. Wang, "CUDA-based radiative transfer method with application to the EM scattering from a two-layer canopy model," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2509-2521, 2010.
doi:10.1163/156939310793675772

24. Jiang, W.-Q., M. Zhang, H. Chen, and Y.-G. Lu, "CUDA implementation in the EM scattering of a three-layer canopy," Progress In Electromagnetics Research, Vol. 116, 457-473, 2011.

25. Pryor, G., B. Lucey, P. Yalamanchili, C. McClanahan, and J. Malcolm, "High-level GPU computing with jacket: For MATLAB and C/C++," Proc. of the SPIE Vol. 8060 Modeling and Simulation for Defense Systems and Applications VI, Orlando, FL, USA, Apr. 26-27, 2011.

26. Zhou, Y., "Microwave imaging based on wideband range profiles," Progress In Electromagnetics Research Letters, Vol. 19, 57-65, 2010.

27. Capozzoli, A., C. Curcio, A. Di Vico, and A. Liseno, "NUFFT- & GPU-based fast imaging of vegetation," IEICE Trans. on Commun., Vol. E94-B, No. 7, 2092-2103, Jul. 2011.
doi:10.1587/transcom.E94.B.2092

28. Zhang, Y., J. Liu, E. Kultursay, M. Kandemir, N. Pitsianis, and X. Sun, "Scalable parallelization strategies to accelerate NuFFT data translation on multicores," Proc. of the Int. Euro-Par Conf., Part II, 125-136, Ischia, Italy, Aug. 31-Sep. 3, 2010.

29. Gregerson, A., "Implementing fast MRI gridding on GPUs via CUDA," NVIDIA Tech. Rep. on Med. Imag. Using CUDA, 2008.

30. Sorensen, T. S., T. Schaeffter, K. Ostergaard Noe, and M. Schacht Hansen, "Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware," IEEE Trans. Med. Imag., Vol. 27, No. 4, 538-547, Apr. 2008.
doi:10.1109/TMI.2007.909834

31. Jacob, M., "Optimized least-square nonuniform fast Fourier transform," IEEE Trans. Signal Proc., Vol. 57, No. 6, 2165-2177, Jun. 2009.
doi:10.1109/TSP.2009.2014809

32. Capozzoli, A., C. Curcio, G. D'Elia, A. Liseno, and P. Vinetti, "Fast CPU/GPU pattern evaluation of irregular arrays," Applied Comput. Electromagn. Soc. J., Vol. 25, No. 4, 355-372, Apr. 2010.

33. Zhang, K. and J. U. Kang, "Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT," Optics Express, Vol. 18, No. 22, 23472-23487, Oct. 2010.
doi:10.1364/OE.18.023472

34. Kestur, S., S. Park, K. M. Irick, and V. Narayanan, "Accelerating the nonuniform fast fourier transform using FPGAs," Proc. of the IEEE Annual Int. Symp. on Field-Programmable Custom Comput. Machines, 19-26, Charlotte, NC, May 2-4, 2010.

35. Fatica, M. and W.-K. Jeong, "Accelerating Matlab with CUDA," Proc. of the High Performance Embedded Comput. Workshop, Lexington, MA, Sep. 18-20, 2007.

36. Capozzoli, A., C. Curcio, A. Liseno, M. Migliorelli, and G. Toso, "Accelarating phase-only reflectarray antenna synthesis by GPUs," Proc. of the Int. Rev. of Progr. in Appl. Comput. Electromagn., Williamsburg, VI, Mar. 27-31, 2011, CD ROM..

37. Bamler, R., "A comparison of range-doppler and wavenumber domain SAR focusing algorithms," IEEE Trans. on Geosci. Remote Sens., Vol. 30, No. 4, 706-713, Jul. 1992.
doi:10.1109/36.158864

38. Chommeloux, L., C. Pichot, and J.-C. Bolomey, "Electromagnetic modeling for microwave imaging of cylindrical buried inho- mogeneities," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 10, 1064-1076, Oct. 1986.
doi:10.1109/TMTT.1986.1133496

39. Rabiner, L. R., R. W. Schafer, and C. M. Rader, "The chirp z-transform algorithm and its application," Bell Syst. Tech. J., Vol. 48, No. 5, 1249-1292, May-Jun. 1969.

40. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp z-transform," IEEE Trans. on Geosci. Remote Sens., Vol. 33, No. 5, 1296-1299, Sep. 1995.
doi:10.1109/36.469496

41., CUDA cuFFT Library, Aug. 2010.
doi:10.1109/36.469496

42., http://www.mathworks.com/matlabcentral/newsreader/view-thread/261866..
doi:10.1109/36.469496

43. Kepner, J., M. Gokhale, R. Minnich, A. Marks, and J. DeGood, "Interfacing interpreted and compiled languages to support applications on a massively parallel network of workstations (MP- NOW)," Cluster Computing, Vol. 3, No. 1, 35-44, 2000.
doi:10.1023/A:1019011716367

44. Huang, B., J. Mielikainen, H. Oh, and H.-L. A. Huang, "Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)," J. Comput. Phys., Vol. 230, No. 6, 2207-2221, Mar. 2011.
doi:10.1016/j.jcp.2010.09.011

45. Lim, K.-S. and V. C. Koo, "Design and construction of wideband VNA ground-based radar system with real and synthetic aperture measurement capabilities," Progress In Electromagnetics Research, Vol. 86, 259-275, 2008.
doi:10.2528/PIER08092204

46. Narayanan, R. M., D. W. Doerr, and D. C. Rundquist, "Temporal decorrelation of x-band backscatter from wind- influenced vegetation," IEEE Trans. Aerosp. Electron. Syst., Vol. 28, No. 2, 404-412, Apr. 1992.
doi:10.1109/7.144566