Vol. 24
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-05-01
Theoretical and Experimental Studies of 35 GHz and 96 GHz Electromagnetic Wave Propagation in Plasma
By
Progress In Electromagnetics Research M, Vol. 24, 179-192, 2012
Abstract
The 35GHz and 96GHz electromagnetic wave propagation characteristics in plasma are studied theoretically and experimentally in this paper. The variations of the incident electromagnetic wave attenuation along with the plasma density, collision frequency and electromagnetic wave frequency are acquired based on the physical model. The electromagnetic wave propagation properties in plasma are studied experimentally with the shock tube, and the experimental results match well with the theoretical ones. The theoretical and experimental results show that increasing the electromagnetic wave frequency is an alternative and effective method to solve the reentry blackout problems.
Citation
Ling Zheng, Qing Zhao, Shuzhang Liu, Ping Ma, Cheng Huang, Yongfu Tang, Xulin Chen, Xiaojun Xing, Chunyan Zhang, and Xiangang Luo, "Theoretical and Experimental Studies of 35 GHz and 96 GHz Electromagnetic Wave Propagation in Plasma," Progress In Electromagnetics Research M, Vol. 24, 179-192, 2012.
doi:10.2528/PIERM12030709
References

1. Keidar, M., "Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights," Journal of Spacecraft and Rockets, Vol. 45, 445-453, 2008.
doi:10.2514/1.32147

2. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, 852-855, 2011.
doi:10.1109/TPS.2010.2098890

3. Ma, C. G., Q. Zhao, X. G. Luo, G. He, L. Zheng, and J. W. Liu, "Study on attenuation characteristics of millimeter wave in plasma," Acta Physica Sinica, Vol. 60, 055201, 2010.

4. Kim, M., M. Keidar, and I. D. Boyd, "Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma," Journal of Spacecraft and Rockets, Vol. 45, 1223-1229, 2008.
doi:10.2514/1.37395

5. Thoma, C., D. V. Rose, C. L. Miller, R. E. Clark, and T. P. Hughes, "Electromagnetic wave propagation through an overdense magnetized collisional plasma layer," Journal of Applied Physics, Vol. 106, 043301, 2009.
doi:10.1063/1.3195085

6. Ai, X., Y. Han, C. Y. Li, and X. W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011.

7. Yin, X., H. Zhang, H. Y. Xu, and X. F. Zeng, "Improved shift-operator FDTD method for anisotropic magnetized cold plasmas with arbitrary magnetic field declination," Progress In Electromagnetic Research B, Vol. 38, 39-56, 2012.

8. Gurel, C. S. and E. Oncu, "Characteristics of electromagnetic wave propagation through a magnetized plasma slab with linearly varying electron density," Progress In Electromagnetics Research B, Vol. 21, 385-398, 2010.

9. Cheng, G. X. and L. Liu, "Direct finite-difference analysis of the electromagnetic-wave propagation in inhomogeneous plasma," IEEE Transactions on Plasma Science, Vol. 38, 3109-3115, 2010.
doi:10.1109/TPS.2010.2071886

10. Yang, H. W. and R. S. Chen, "FDTD analysis on the effect of plasma parameters on the reflection coefficient of the electromagnetic wave," Opt. Quant. Electron., Vol. 39, 1245-1252, 2007.
doi:10.1007/s11082-008-9195-8

11. Liu, S. B., J. J. Mo, and N. C. Yuan, "FDTD analysis of electromagnetic reflection by conductive plane covered with magnetized inhomogeneous plasmas," International Journal of Infrared and Millimeter Waves, Vol. 23, 1803-1815, 2002.
doi:10.1023/A:1021418805523

12. Tang, D. L., A. P. Sun, X. M. Qiu, and P. K. Chu, "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 31, 405-410, 2003.
doi:10.1109/TPS.2003.811648

13. Angus, J. R., S. I. Krasheninnikov, and A. I. Smolyakov, "Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab," Physics of Plasma, Vol. 17, 102115, 2010.
doi:10.1063/1.3499664

14. Brodin, G., M. Marklund, L. Stenflo, and P. K. Shukla, "Dispersion relation for electromagnetic wave propagation in a strongly magnetized plasma," New Journal of Physics, Vol. 8, 1-6, 2008.

15. Yuan, C. X., Z. X. Zhou, and H. G. Sun, "Reflection properties of electromagnetic wave in a bounded plasma slab," IEEE Transactions on Plasma Science, Vol. 38, 3348-3355, 2010.
doi:10.1109/TPS.2010.2084110

16. Ma, L. X., H. Zhang, and C. X. Zhang, "Analysis on the reflection characteristic of electromagnetic wave incidence in closed nonmagnetic plasma," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2285-2296, 2008.
doi:10.1163/156939308787543877

17. Nishimoto, M. and H. Ikuno, "Time-frequency analysis of electromagnetic pulse response from a one-dimensional plasma medium," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 181-196, 2004.
doi:10.1163/156939304323062031

18. Yang, H. W., W. C. Tang, and X. K. Kong, "Calculation of the effect on the reflection of the plane electromagnetic wave for non-magnetized plasma with different electron density distributions," International Journal of Infrared and Millimeter Waves, Vol. 28, 547-556, 2007.
doi:10.1007/s10762-007-9226-8

19. Chaudhury, B. and S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods," Physics of Plasmas, Vol. 13, 123302, 2006.
doi:10.1063/1.2397582

20. Shi, J. M., J. C. Wang, Z. C. Yuan, and Y. S. Ling, "Electromagnetic reflection of conductive plane covered with magnetized inhomogeneous plasma ," Internal Journal of Infrared and Millimeter Waves, Vol. 22, 1167-1175, 2001.
doi:10.1023/A:1015063115375

21. Yuan, C. X., Z. X. Zhou, X. L. Xiang, H. G. Sun, and S. Z. Pu, "Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer," Physics of Plasmas, Vol. 17, 113304, 2010.
doi:10.1063/1.3515895

22. Yuan, C. X., Z. X. Zhou, and X. L. Xiang, "Properties of terahertz waves propagation in a bounded plasma slab with high collision frequency and high density," International Conference on Optoelectronics and Image Processing, Haiko, China, Nov. 2010.