Vol. 24
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-21
Radar Identification of Hostile Fire by Means of the Electromagnetic Complex Natural Resonances of Projectiles
By
Progress In Electromagnetics Research M, Vol. 24, 167-178, 2012
Abstract
The authors discuss and demonstrate the feasibility of using ultra wide band microwave radar to detect and identify small arms fire. Detection and tracking is by standard radar techniques, but identification is carried out by exciting the projectiles Complex Natural Resonances and using this aspect independent information to assign a caliber to the incoming projectiles. The typical sizes of small arms projectiles (calibers 5.56 mm through to 13 mm) imply that ultra wide band illumination in the microwave region of the spectrum between 1.5-5.5 GHz is required to excite these object's fundamental resonances. The authors give a discussion of the effects of motion on the quality of the complex natural resonance data obtainable and present both simulated and laboratory data for the radar cross section of three different caliber projectiles (5.56 mm, 7.62 mm and 13 mm).
Citation
Stuart William Harmer, Shawn Edward Cole, and Nicholas John Bowring, "Radar Identification of Hostile Fire by Means of the Electromagnetic Complex Natural Resonances of Projectiles," Progress In Electromagnetics Research M, Vol. 24, 167-178, 2012.
doi:10.2528/PIERM12031305
References

1. Baum, C. E., "On the singularity expansion method for the solution of electromagnetic interaction problems,", Interaction Notes, Note 88, Air Force Weapons Laboratory, 1971.

2. Baum, C. E., "The singularity expansion method: Background and developments," IEEE Antennas and Propagation Society Newsletter, 1986.
doi:10.2528/PIER99040501

3. Wang, Y. and N. Shuley, "Complex resonant frequencies for the identification of simple objects in free space and lossy environments," Progress In Electromagnetics Research, Vol. 27, 1-18, 2000.
doi:10.1163/1569393053305062

4. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Application, Vol. 19, No. 5, 655-669, 2005.
doi:10.2528/PIER02100201

5. Toribio, R., J. Saillard, and P. Pouliguen, "Identification of radar targets in resonance zone: E-pulse techniques," Progress In Electromagnetics Research, Vol. 43, 39-58, 2003.
doi:10.1109/TAES.1975.308051

6. Berni, A. J., "Target identification by natural resonant estimation," IEEE Trans. Aerospace Electron. Syst., Vol. 11, No. 2, 147-157, 1975.
doi:10.1002/andp.19083300302

7. Mie, G., "Beitrage zur optik truber medien, speziell kolloider metallosungen," Annalen der Physik, Vol. 4, No. 25, 377-445, 1908.

8. Hey, J. S., G. S. Stewart, J. T. Pinson, and P. E. V. Prince, "The scattering of electromagnetic waves by conducting spheres and discs," Proc. Phys. Soc. B, Vol. 69, 1038, 1956.
doi:10.1109/TAP.2006.886510

9. Lui, H. and N. V. Shuley, "Radar target identification using a banded E-pulse technique," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3874-3881, 2006.
doi:10.1049/iet-map.2009.0382

10. Harmer, S. W., D. A. Andrews, N. D. Rezgui, and N. J. Bowring, "Detection of handguns by their complex natural resonant frequencies," IET Microw. Antennas Propag., Vol. 4, No. 9, 1182-1190, Sep. 2010.
doi:10.2528/PIER07041602

11. Chauveau, J., N. de Beaucoudrey, and J. Saillard, "Characterization of perfectly conducting targets in resonance domain with their quality of resonance," Progress In Electromagnetics Research, Vol. 74, 69-84, 2007.
doi:10.1109/PROC.1965.4068

12. Kennaugh, E. M. and D. L. Moffatt, "Transient and impulse response approximations," Proceedings of the IEEE, Vol. 53, 893-901, Aug. 1965.
doi:10.1109/TAES.1976.308260

13. Chuang, C. W. and D. L. Moffatt, "Natural resonances of radar targets via Prony's method and target discrimination," IEEE Trans. Aero. and Elect. Sys., Vol. 12, No. 5, 583-589, 1976.
doi:10.1109/5.104223

14. Baum, C. E., E. J. Rothwell, K. M. Chen, et al. "The singularity expansion method and its application to target identification," Proc. IEEE, Vol. 79, No. 10, 1481-1492, 1991.
doi:10.1049/iet-rsn.2008.0112

15. Secmen, M. and G. Turhan-Sayan, "Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm," IET Radar, Sonar and Navig., Vol. 3, No. 6, 583-595, 2009.
doi:10.1109/8.18710

16. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 229-234, 1989.
doi:10.1109/TAP.2002.807947

17. Bray, M. G., D. H.Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 1732-1742, Dec. 2002.
doi:10.1109/PROC.1973.8997

18. Richter, J. H. and D. R. Jensen, "Radar cross-section measurements of insects," Proc. IEEE, Vol. 6, 143-144, 1973.

19. Wilton, D. R. and K. R. Umashankar, "Parametric study of an L-shaped wire using thesingularity expansion method,", Interaction Notes, Note 152, Air Force Weapons Laboratory, 1973.

20. Baum, C. E., "Concerning the identification of buried dielectric targets,", Interaction Notes, Note 504, Philips Laboratory, Jul. 24, 1994.

21. Baum, C. E., "Combining polarimetry with SEM in radar backscattering for target identification,", Interaction Notes, Note 585, Air Force Weapons Laboratory, May 23, 2003.
doi:10.1109/5.104223

22. Baum, C. E., et al. "The singularity expansion method and its application to target identification," Proc. IEEE, 1481-1492, 1991.