Vol. 29
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-31
An FFT-Based Approach in Acceleration of Discrete Green's Function Method for Antenna Analysis
By
Progress In Electromagnetics Research M, Vol. 29, 17-28, 2013
Abstract
In this paper, the fast Fourier transform (FFT) to perform spatial convolutions of the time domain discrete Green's functions (DGF) method related to the analysis of the antenna with more than one dimension has been proposed. For this aim, the discrete Green's functions and the currents on the antenna have been appropriately defined periodic so as to use the zero padded fast Fourier transform. The computational complexity of this approach is O(NwNxNyNz log(NxNyNz)), contrary to O(NwNx2Ny2Nz2)for direct implementation of the convolutions. Simulation results demonstrate the great efficiency of the FFTbased spatial convolutions in the modeling of planar antennas.
Citation
Salma Mirhadi, Mohammad Soleimani, and Ali Abdolali, "An FFT-Based Approach in Acceleration of Discrete Green's Function Method for Antenna Analysis," Progress In Electromagnetics Research M, Vol. 29, 17-28, 2013.
doi:10.2528/PIERM12121407
References

1. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 94, 197-212, 2009.
doi:10.2528/PIER09061708

2. Yang, S. W., Y. K. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

3. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on bistatic scattering from a target above two-layered rough surface using UPML absorbing condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102

4. Noroozi, Z. and F. Hojjat-Kashani, "Three dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-12, 2012.
doi:10.2528/PIERL11070113

5. Dzulkipli, N. I., M. H. Jamaluddin, R. Ngah, M. R. Kamarudin, N. Seman, and M. K. A. Rahim, "Mutual coupling analysis using FDTD for dielectric resonator antenna reflectarray radiation prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.

6. Vazquez, J. and C. G. Parini, "Discrete Green's function formulation of FDTD method for Electromagnetics modelling," Electronics Letters, Vol. 35, No. 7, 554-555, 1999.
doi:10.1049/el:19990416

7. Vazquez, J. and C. G. Parini, "Antenna modelling using discrete Green's function formulation of FDTD method," Electronics Letters, Vol. 35, No. 13, 1033-1034, 1999.
doi:10.1049/el:19990741

8. Kastner, R., "A Multidimensional z-transform evaluation of the discrete finite difference time domain Green's function," IEEE Trans. on Antennas and Propag., Vol. 54, No. 4, 1215-1222, Apr. 2006.
doi:10.1109/TAP.2006.872674

9. Jeng, S. K., "An analytical expression for 3-D dyadic FDTD-compatible Green's function in in¯nite free space via z-transform and partial difference operators," IEEE Trans. on Antennas and Propag., Vol. 59, No. 4, 1347-1355, Apr. 2011.
doi:10.1109/TAP.2011.2109363

10. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013.

11. Ma, W., M. R. Rayner, and C. G. Parini, "Disctere Green's function formulation of the FDTD method and its application in antenna modeling," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, 339-364, Jan. 2005.
doi:10.1109/TAP.2004.838797

12. Cottee, A., W. Ma, M. R. Rayner, and C. G. Parini, "Application of the DGF-FDTD technique to log periodic antennas," Int. Conf. on Antennas and Propagation, 553-556, UK, Apr. 2003.

13. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707

14. Zhuang, W., Z. Fan, D.-Z. Ding, and Y. An, "Fast analysis and design of frequency selective surface using the GMRESR-FFT method," Progress In Electromagnetics Research B, Vol. 12, 63-80, 2009.
doi:10.2528/PIERB08120406

15. Capozzoli, A., C. Curcio, and A. Liseno, "NUFFT-accelerated plane-polar (also phaseless) near-field/far-field transformation," Progress In Electromagnetics Research M, Vol. 27, 59-73, 2012.