Vol. 32
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-31
A Simple Technique for Improving the Anechoic Performance of a Pyramidal Absorber
By
Progress In Electromagnetics Research M, Vol. 32, 129-143, 2013
Abstract
In this paper, we propose a very simple technique that offers an extra degree of freedom to optimize the design of a tire dust-based absorber with reduced height. Cladding is a technique that is used to enhance the surface properties of a part, and it has been used in many applications for many years. In this technique, a clad layer is created on the core material, and the composition of the clad layer is adjusted to enhance the performance of the core material. We use a rice husk-clad layer to enhance the impedance matching characteristics of the low-loss, tire-dust core, microwave absorber. The overall design is a two-layer, geometrically-tapered, pyramidal structure composed of two lossy waste materials. Our main goal was to make the front surface less reflective (impedance matched), hence the material of the outer layer (clad) of the absorber was selected on the basis of the analysis of the dielectric properties of the candidate materials. Optimum thickness of the clad was obtained by using CST simulation software and found to be 12 mm, for which a reflectivity performance of less than -20 dB was achieved in the frequency range of 4 to 20 GHz. The results were found to be better than those provided by an earlier design of the absorber, which was composed of a mixture of tire dust and rice husks.
Citation
Muhammad Nadeem Iqbal, Mohd Fareq Bin Abd Malek, Yeng Seng Lee, Liyana Zahid, Muhammad Iqbal Hussain, Mohd Fariz bin Haji Abd Malek, Nur Fairuz Mohamed Yusof, Norshafinash Saudin, and Noor Anida Abu Talib, "A Simple Technique for Improving the Anechoic Performance of a Pyramidal Absorber," Progress In Electromagnetics Research M, Vol. 32, 129-143, 2013.
doi:10.2528/PIERM13061607
References

1. MIL-STD-461F "Requirements for the control of electromagnetic interference characteristics of subsystems and equipment,", Department of Defense Interface Standard, USA, 2007.

2. Tong, X. C., Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, Taylor & Francis Group, Broken Sound Parkway NW, Suite 300, Boca Raton, 2009.

3. Glaser, J. I., "Stealthy antennas minimizing the radar cross section of an essential communication system component," The WSTIAC Quarterly, Vol. 8, No. 2, 2008.

4. Ford, K. L. and B. Chambers, "Improvement in the low frequency performance of geometric transition radar absorbers using square loop impedance layers," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 133-141, Jan. 2008.

5. Ford, K. L., D. Holtby, and B. Chambers, "Pyramidal absorbers loaded with resistive FSS," IEEE Antennas and Propagation Society International Symposium, 4553-4556, 2007.

6. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric studies of the pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.

7. Nornikman, H., P. J. Soh, A. A. H. Azremi, M. R. N. Husna, and O. S. Liam, "Parametric study of pyramidal microwave absorber design," International Symposium on Antennas and Propagation (ISAP 2008), Taipei, Taiwan, Oct. 27-30, 2008.

8. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Modeling simulation stage of pyramidal and wedge absorber microwave absorber design," 4th International Conference on Electromagnetic Near Field Characterization and Imaging (ICONIC' 09), 238-242, Taipei, Taiwan, Jun. 24-26, 2009.

9. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Performance simulation of pyramidal and wedge microwave absorbers," 3rd Asian Modeling Symposium (AMS 2009), 649-654, Bandung, Indonesia, May 25-26, 2009.

10. Nornikman, H., F. Malek, P. J. Soh, and A. A. H. Azremi, "Reflection loss performance of hexagonal base pyramid microwave absorber using different agricultural waste material," 2010 Loughborough Antennas & Propagation Conference, 313-316, Loughborough, UK, Nov. 8-9, 2010.

11. Nornikman, H., P. J. Soh, F. Malek, A. A. H. Azremi, F. H. Wee, and R. B. Ahmad, "Microwave wedge absorber design using rice husk --- An evaluation on placement variation," 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 916-919, Beijing, China, Apr. 12-16, 2010.

12. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.

13. Nornikman, H., P. J. Soh, A. A. H. Azremi, F. H. Wee, and M. F. Malek, "Investigation of an agricultural waste as an alternative material for microwave absorbers," PIERS Online, Vol. 5, No. 6, 506-510, 2009.

14. Malek, F., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. A. Aziz, A. R. Othman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.

15. Cheng, E. M., F. Malek, M. Ahmed, K. Y. You, K. Y. Lee, and H. Nornikman, "The use of dielectric mixture equations to analyze the dielectric properties of a mixture of rubber tire dust and rice husks in a microwave absorber," Progress In Electromagnetics Research, Vol. 129, 559-578, 2012.

16. Malek, F., H. Nornikman, and O. Nadiah, "Pyramidal microwave absorber design of waste material using rice husk and rubber tire dust," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 4, No. 1, Jan.-Jun. 2012.

17. Wan Ab Karim Ghani, W. A., M. S. F. Abdullah, K. A. Matori, A. B. Alias, and G. da Silva, "Physical and thermochemical characterization of Malaysian biomass ashes," Journal --- The Institution of Engineers, Vol. 71, No. 3, Malaysia, Sep. 2010.

18. Wang, M. J., Y. F. Huang, P. T. Chiueh, W. H. Kuan, and S. L. Lo, "Microwave-induced torrefaction of rice husk and sugarcane residues," Energy, Vol. 37, 177-184, 2012.

19. Bantsis, G., S. Mavridou, C. Sikalidis, M. Betsiou, N. Oikonomou, and T. Yioultsis, "Comparison of low cost shielding-absorbing cement paste building materials in X-band frequency range using a variety of wastes," Ceramics International, Vol. 38, 3683-3692, 2012.

20. Aylon, E., A. Fernandez-Colino, R. Murillo, G. Grasa, M. V. Navarro, T. Garcia, and A. M. Mastral, "Waste tyre pyrolysis: Modeling of a moving bed reactor," Waste Management, Vol. 30, 2530-2536, 2010.

21. Hasar, U. C., "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.

22. Li, E., Z. P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, "Broadband measurement of dielectric properties of low-loss materials at high temperature using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.

23. Hasar, , U. C., G. Akkaya, M. Aktan, C. Gozu, and A. C. Aydin, "Water-to-cement ratio prediction using anns from non-destructive and contactless microwave measurements," Progress In Electromagnetics Research, Vol. 94, 311-325, 2009.

24. Paez, E., M. A. Azpurua, C. Tremola, and R. C. Callarotti, "Uncertainty estimation in complex permittivity measurements by shielded dielectric resonator technique using the Monte Carlo method," Progress In Electromagnetics Research B, Vol. 41, 101-119, 2012.

25. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," J. Appl. Phys., Vol. 111, 061301, 2012.

26. Holloway, C. L., R. R. DeLyser, R. F. German, P. McKenna, and M. Kanda, "Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices," IEEE Trans. Electromag. Compat., Vol. 39, No. 1, 33-47, Feb. 1997.