Vol. 32
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-09-01
Extension of the Transmission Line Theory Application with Modified Enhanced Per-Unit-Length Parameters
By
Progress In Electromagnetics Research M, Vol. 32, 257-270, 2013
Abstract
This paper introduces a modified enhanced transmission-line theory to account for higher-order modes while using a standard transmission line equation solver or equivalently a Baum, Liu and Tesche (BLT) equation solver. The complex per-unit-length parameters as defined by Nitsch et al. are first cast into an appropriate per-unit-length resistance, inductance, capacitance and conductance (RLCG) form. Besides, these per-unit-length parameters are modified to account for radiation losses with reasonable approximations. This modification is introduced by an additional per-unit-length resistance. The reason and explanations for this parameter are provided. Results obtained with this new formalism are comparable to those obtained using an electromagnetic full-wave solver, thus extending the capability of conventional transmission line solvers.
Citation
Sofiane Chabane, Philippe Besnier, and Marco Klingler, "Extension of the Transmission Line Theory Application with Modified Enhanced Per-Unit-Length Parameters," Progress In Electromagnetics Research M, Vol. 32, 257-270, 2013.
doi:10.2528/PIERM13072308
References

1. Agrawal, A. K., H. J. Price, and S. H. Gurbaxani, "Transient response of a multiconductor transmission tine excited by a nonuniform electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, No. 2, 119-129, May 1980.
doi:10.1109/TEMC.1980.303824

2. Rachidi, S. V. and V. S. Tkachenko, "Electromagnetic Field Interaction with Transmission Lines. From Classical Theory to HF Radiation Effects," WIT Press, 2007.

3. Tkachenko, S. V., F. Rachidi, and M. Ianoz, "Electromagnetic field coupling to a line of finite length: Theory and fast iterative solutions in frequency and time domains," IEEE Transactions on Electromagnetic Compatibility, Vol. 37, No. 4, 509-518, Nov. 1995.
doi:10.1109/15.477335

4. Maffucci, A., G. Miano, and F. Villone, "An enhanced transmission line model for conducting wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 4, 512-528, Nov. 2004.
doi:10.1109/TEMC.2004.837685

5. Nitsch, J., F. Gronwald, and G. Wollenberg, Radiating Nonunifrom Transmission-Line Systems and the Partial Element Equivalent Circuit Method, John Wiley & Sons, 2009.
doi:10.1002/9780470682425

6. Nitsch, B. J. and V. S. Tkachenko, "Complex-valued transmission-line parameters and their relation to the radiation resistance," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 477-487, Aug. 2004.
doi:10.1109/TEMC.2004.831905

7. Baum, C. E., T. K. Liu, and F. Tesche, "On the analysis of general multiconductor transmission line networks,", Interaction Notes 350, Kirtland, AFB, NM, Nov. 1978.

8. Parmantier, J. P. and P. Degauque, "Topology-based modeling of very large systems," Modern Radio Science, 151-177, J. Hamelin, Editor, Oxford Univ. Press, London, U.K., 1996.

9. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.

10. Schelkunoff, S. A. and H. T. Friis, Antennas --- Theory and Practic, John Wiley & Sons, Inc., New York, 1952.

11. Pignari, S. A. and D. Bellan, "Incorporating vertical risers in the transmission line equations with external sources," Proc. Int. Symp. on Electromagn. Compat., Vol. 3, 974-979, Aug. 9-13, 2004.