Vol. 34
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-01-21
Electric and Magnetic Fields Due to Massive Photons and Their Consequences
By
Progress In Electromagnetics Research M, Vol. 34, 153-161, 2014
Abstract
Allowing photons to bear mass, the electric and magnetic fields of a steadily moving charge are not no longer perpendicular to each other, as anticipated from Biot-Savart law. The electric and magnetic fields of such a particle depend on the gauge potentials, φ and A. The orthogonality relations of the particle fields and the direction of motion depend on the mass of the photon. The non-relativistic correction to the particle fields was found to be related to the Lorenz gauge condition. It is shown that the existence of magnetic monopoles inside matter is inevitable when magnetic filed is applied in a conductor. Their existence is a manifestation of the massive nature of the photon inside matter. Neither electric nor magnetic current is separately conserved for photons, but their sum is. Massive photons are found to produce electric and magnetic fields. A force proportional to the square of the current is found to act along the wire, F = 1/2μ0I2, where μ0 is vacuum permeability.
Citation
Arbab Ibrahim Arbab, "Electric and Magnetic Fields Due to Massive Photons and Their Consequences," Progress In Electromagnetics Research M, Vol. 34, 153-161, 2014.
doi:10.2528/PIERM13111603
References

1. Vigier, J. P., "Evidence for nonzero mass photons associated with a vacuum-induced dissipative red-shift mechanism," IEEE Transactions on Plasma Science, Vol. 18, No. 1, 64-72, 1990.

2. Tu, L., J. Luo, and G. T. Gillies, "The mass of the photon," Rep. Prog. Phys., Vol. 68, 77, 2005.

3. Kar, G., M. Sinha, and S. Roy, "Maxwell equations, nonzero photon mass, and conformal metric fluctuation," Int. J. Theor. Phys., Vol. 32, No. 4, 593-607, 1993.

4. Bass, L. and E. Schodinger, "Must the photon mass be zero?," Proc. Roy. Soc. London: Series A, Vol. 232, No. 1188, 1-6, 1955.

5. Dvogeglazov, V. V. and J. L. Quintanar Gonzalez, "A note on the Lorentz transformations for the photon," Found. Phys. Lett., Vol. 19, 195-200, 2011.

6. Proca, A., "Sur la theorie ondulatoire des electrons positifs et negatifs," J. Phys. Radium, Vol. 7, 347-353, 1936.

7. Dvogeglazov, V. V., "The modified Bargmann-Wigner formalism for higher spin fields and relativistic quantum mechanics," Int. J. Mod. Phys. Conf. Ser., Vol. 3, 121-132, 2011.

8. Arbab, A. I., "The analogy between matter and electromagnetic waves," EPL, Vol. 94, 50005, 2011.

9. Arbab, A. I., "Derivation of Dirac, Klein-Gordon, Schrodinger, diffusion and quantum heat transport equations from a universal quantum wave equation," EPL, Vol. 92, 40001, 2010.

10. Armour, R. S., "Spin-1/2 Maxwell field," Found. Phys., Vol. 34, 815-842, 2004.

11. Dvoeglazov, V. V. and J. K. R. Murty Eds., "Fundamental physics: Contemporary thinking," Special Issue of ICFAI Journal of Physics, Vol. 2, No. 2-3, 1-196, 2009.

12. Arbab, A. I., "Complex Maxwell's equations," Chinese Phys. B, Vol. 22, 030301, 2013.

13. Silberstein, L., "Elektromagnetische Grundgleichungen in bivectorieller Behandlung," Ann. d. Phys., Vol. 22, 579, 1907.

14. Majorana, E., "Teoria relativistica di particelle con momento intrinseco arbitrario," Nuovo Cimento, Vol. 9, No. 10, 335-344, 1932.

15. Mignani, R., E. Recami, and M. Bxldo, "About a Dirac-like equation for the photon, according to Ettore Majorana," Nuovo Cimento, Vol. 11, No. 12, 568-572, 1974.

16. Singh, P. and N. Dadhich, "The field equation from Newton's law of motion and absence of magnetic monopole," Int. J. Mod. Phys. A, Vol. 16, 1237-1247, 2001.

17. Arbab, A. I., "Complex Maxwell's equation," Chinese Phys. B, Vol. 22, No. 3, 030301, 2013.

18. Arbab, A. I. and Z. A. Satti, "The generalized Maxwell equations and the prediction of electroscalar wave," Progress in Physics, Vol. 2, 8, 2009.

19. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959.

20. Dirac, P. A. M., "The quantum theory of the electron," Proc. Roy. Soc. London: Series A, Vol. 117, No. 778, 610-624, 1928.

21. Chereshko, V. P., et al. "Enhancement of the longitudinal magnetic moment of the exciton due to its motion," International Journal of Modern Physics B, Vol. 21, No. 08-09, 1350-1357, 2009.

22. Gingras, M. J. P., "Observing monopoles in a magnetic analog of ice," Science, Vol. 326, No. 5951, 375-376, 2007.

23. Cooper, L. N., "Bound electron pairs in a degenerate fermi gas," Phys. Rev., Vol. 104, 1189-1190, 1956.

24. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175-1204, 1957.

25. Dirac, P. A. M., "Quantised singularities in the electromagnetic field," Proc. Roy. Soc. London: Series A, Vol. 133, No. 821, 60-72, 1931.

26. Graneau, P., "Longitudinal magnet forces?," J. Appl. Phys., Vol. 55, No. 6, 2598-2600, 1984.