Vol. 35
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-02-12
Ultra Slow EM Wave Propagation Characteristics of Left-Handed Material Loaded Helical Guide
By
Progress In Electromagnetics Research M, Vol. 35, 11-19, 2014
Abstract
The dispersion characteristics (ω-β diagram) of a left-handed material (LHM) loaded helical guide is analytically solved and numerically computed for different metamaterial medium properties as well as helical guide parameters. The modal behaviour of this structure has been studied with an aim to achieve ultra slow wave over wide bandwidth which finds potential applications in optical switches and memories for optical processing. Significant amount of phase velocity reduction has been achieved in comparison to when helix is in free space or loaded with normal dielectric column. Other modal properties such as presence of two fundamental modes - backward and forward wave and their lower cut-off frequency (LCF) as well as bandwidth spectrum are also revealed thoroughly.
Citation
Dushyant Kumar Sharma, and Surya Kumar Pathak, "Ultra Slow EM Wave Propagation Characteristics of Left-Handed Material Loaded Helical Guide," Progress In Electromagnetics Research M, Vol. 35, 11-19, 2014.
doi:10.2528/PIERM14010102
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneous negative values of ε and μ," Soviet Phys. Uspekhi, Vol. 1, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

3. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, No. 3, 191-202, 2004.
doi:10.1080/00107510410001667434

4. Cory, T. and T. Blum, "Surface-wave propagation along a metamaterial cylindrical guide," Microwave and Optical Technology Letters, Vol. 44, No. 1, 31-35, 2005.
doi:10.1002/mop.20538

5. Shu, W. and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.
doi:10.2528/PIER06081601

6. Cory, T. and T. Barger, "Surface-wave propagation along a metamaterial slab," Microwave and Optical Technology Letters, Vol. 38, No. 5, 392-395, 2003.
doi:10.1002/mop.11070

7. Wu, B. I., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," Journal of Applied Physics, Vol. 93, No. 11, 9386-9388, 2003.
doi:10.1063/1.1570501

8. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1431-1442, 2005.
doi:10.1109/TMTT.2005.845208

9. Ruppin, R., "Surface polaritons of a left-handed medium," Physics Letters A, Vol. 277, No. 1, 61-64, 2000.
doi:10.1016/S0375-9601(00)00694-0

10. Darmanyan, S. A., M. Neviere, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun., Vol. 225, No. 4--6, 233-240, 2003.
doi:10.1016/j.optcom.2003.07.047

11. Kats, A. V., S. Savelev, V. A. Yampolskii, and F. Nori, "Left-handed interfaces for electromagnetic surface waves," Physical Review Letters, Vol. 98, No. 7, 073901-1-073901-4, 2007.
doi:10.1103/PhysRevLett.98.073901

12. Leskova, T. A., A. A. Maradudin, and I. Simonsen, "Scattering of electromagnetic waves from the random surface of a left-handed medium," Proc. SPIE, Vol. 4447, 6-16, 2001.
doi:10.1117/12.446730

13. Leskova, T. A., A. A. Maradudin, and I. Simonsen, "Coherent scattering of an electromagnetic wave from, and its transmission through, a slab of a left-handed medium with a randomly rough illuminated surface," Proc. SPIE, Vol. 5189, 22-35, 2003.
doi:10.1117/12.503386

14. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

15. Bait-Suwailam, M. M. and Z. Chen, "Surface-wave on a grounded double-negative (DNG) slab waveguide," Microwave and Optical Technology Letters, Vol. 44, No. 6, 494-498, 2003.
doi:10.1002/mop.20677

16. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Physical Review E, Vol. 67, 057602, 2003.
doi:10.1103/PhysRevE.67.057602

17. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

18. Itoh, T., "Prospects for metamaterials," Applied Physics Letters, Vol. 40, No. 16, 972-973, 2004.

19. Itoh, T., "Cloaking a receiving antenna or a sensor with plasmonic metamaterials," Metamaterials, Vol. 4, No. 2-3, 153-159, 2010.
doi:10.1016/j.metmat.2010.03.005

20. Gil, M., J. Bonache, and F. Martin, "Metamaterial filters: A review," Metamaterials, Vol. 2, No. 4, 186-197, 2008.
doi:10.1016/j.metmat.2008.07.006

21. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

22. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Letters of Nature, Vol. 397, 594-598, 1999.
doi:10.1038/17561

23. Bigelow, M. C., N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science, Vol. 301, No. 5630, 200-202, 2003.
doi:10.1126/science.1084429

24. Erfaninia, H. and A. Rostami, "Group velocity reduction in multilayer metamaterial waveguide," Optik, Vol. 124, No. 12, 1230-1233, 2013.
doi:10.1016/j.ijleo.2012.03.001

25. Baqir, M. A. and P. K. Choudhury, "Flux density through guides with microstructured twisted clad DB medium," Journal of Nanomaterials, Vol. 2014, 629651, 2014.

26. Baqir, M. A. and P. K. Choudhury, "Effects on the energy flux density due to pitch in twisted clad optical fibers," Progress In Electromagnetics Research, Vol. 139, 643-654, 2013.
doi:10.2528/PIER13041103

27. Basu, B. N., Electromagnetic Theory and Application in Beam-wave Electronics, World Scientific, Singapore, 1996.
doi:10.1142/2804

28. Zhang, K. and D. Li, Electromagnetic Theory for Microwaves and Optoelectronic, Springer, New York, 2008.