Vol. 36
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-22
Performance of 2-d DOA Estimation for Stratospheric Platforms Communications
By
Progress In Electromagnetics Research M, Vol. 36, 109-116, 2014
Abstract
This paper presents a new approach for localizing mobile phone users using the promising technique of stratospheric platform (SP) flying at altitudes 17-22 km high and a suitable Direction-of-Arrival technique (DOA). The proposed technique provides information about accurate locations for mobile stations - through high resolution DOA technique - which is very important for traffic control and rescue operations at emergency situations. The DOA estimation in this technique defines the user location using MUSIC algorithm which provides good accuracy comparable to the Global Positioning System (GPS) techniques but without the need for GPS receivers. Several scenarios for users' locations determination are tested and examined to define the robustness of the proposed technique.
Citation
Yasser Albagory, "Performance of 2-d DOA Estimation for Stratospheric Platforms Communications," Progress In Electromagnetics Research M, Vol. 36, 109-116, 2014.
doi:10.2528/PIERM14033102
References

1. Shaukat, S. F., M. I. Ansari, R. Farooq, U. Ibrahim, and M. Faisal, "Mobile phone location determination in urban and rural areas using enhanced observed time difference technique," World Applied Sciences Journal, Vol. 6, No. 7, 902-907, 2009.

2. Pavlidou, F. N., M. Ruggieri, M. Gerla, and R. Miura, "Communications via high altitude platforms: Technologies and trials," International Journal of Wireless Information Networks, Vol. 13, No. 4, 1-4, Jan. 2006.
doi:10.1007/s10776-005-0019-5

3. Dessouky, M., H. Sharshar, and Y. Albagory, "Design of high altitude platforms cellular communications," Progress In Electromagnetics Research, Vol. 67, 251-261, 2007.
doi:10.2528/PIER06092501

4. Karapantazis, S. and F. N. Pavlidou, "The role of high altitude platforms in beyond 3G networks," IEEE Wireless Communications Magazine, Vol. 12, No. 6, 33-41, 2005.
doi:10.1109/MWC.2005.1561943

5. Mohammed, A., A. Mehmood, F. N. Pavlidou, and M. Mohorcic, "The role of high-altitude platforms (HAPs) in the wireless global connectivity," Proceedings of the IEEE, Vol. 99, No. 11, 1939-1953, Nov. 2011.
doi:10.1109/JPROC.2011.2159690

6. Kim, J., D. Lee, J. Ahn, D. S. Ahn, and B. J. Ku, "Is HAPS viable for the next-generation telecommunication platforms in Koria," EURASIP Journal on Wireless Communications and Networking, Vol. 2008, 596383, 2008, doi: 1155/2008/596383.

7. Albagory, Y., "A novel design of arbitrary shaped cells for efficient coverage from high altitude platforms," Progress In Electromagnetics Research Letters, Vol. 1, 245-254, 2008.
doi:10.2528/PIERL07120505

8. Aljahdali, S., M. Nofal, and Y. Albagory, "Geometrical correction for cell deployment in stratospheric cellular systems," Progress In Electromagnetics Research C,, Vol. 29, 83-96, 2012.
doi:10.2528/PIERC12020907

9. Nofal, M., S. Aljahdali, and Y. Albagory, "Tapered beamforming for concentric ring arrays," AEU International Journal of Electronics and Communications, Vol. 67, No. 1, 58-63, 2013.
doi:10.1016/j.aeue.2012.06.005

10. Albagory, Y., M. Dessouky, and H. Sharshar, "An approach for low sidelobe beamforming in uniform concentric circular arrays," International Journal of Wireless Personal Communications, Vol. 43, No. 4, 1363-1368, 2007.
doi:10.1007/s11277-007-9310-3

11. Pace, P. and G. Aloi, "Disaster monitoring and mitigation using aerospace technologies and integrated telecommunication networks," IEEE Aerospace and Electronic Systems Magazine, Vol. 23, No. 4, 3-9, Apr. 2008.
doi:10.1109/MAES.2008.4493436

12. Li, N. J., J. F. Gu, and P. Wei, "2-D DOA estimation via matrix partition and stacking technique," EURASIP J. Adv. Signal Process. 2009, Vol. 53, 1-8, 2009.

13. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Transactions on Signal Processing, Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861

14. Pesavento, M. and J. F. Böhme, "Direction of arrival estimation in uniform circular arrays composed of directional elements," Proc. Sensor Array and Multichannel Signal Processing Workshop, 503-507, 2002.

15. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Trans. Antennas Propagation, Vol. 55, No. 3, 841-849, 2007.
doi:10.1109/TAP.2007.891848

16. Zhang, T. T., Y. L. Lu, and H. T. Hui, "Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique," IEEE Trans. Aerosp. Electron. Syst., Vol. 44, No. 3, 1215-1221, 2008.
doi:10.1109/TAES.2008.4655375

17. Buhong, W., H. Hontat, and L. Mookseng, "Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling," IEEE Trans. Antennas Propagation, Vol. 58, No. 3, 747-755, 2010.
doi:10.1109/TAP.2009.2039323

18. Xie, J., Z. He, H. Li, and J. Li, "2D DOA estimation with sparse uniform circular arrays in the presence of mutual coupling," EURASIP Journal on Advances in Signal Processing, Vol. 2011, 127, 2011.
doi:10.1186/1687-6180-2011-127

19. Liu, F. L., Study on parameter estimation algorithms for multipath signals in wireless networks, Doctoral Dissertation, Northeastern University, Shenyang, China, 2005.

20. Wu, Y. T., G. S. Liao, and H. C. So, "A fast algorithm for 2-D direction-of-arrival estimation," Signal Processing, Vol. 83, 1827-1831, 2003.
doi:10.1016/S0165-1684(03)00118-X

21. Kuroda, T., N. Kikuma, and N. Inagaki, "DOA estimation and pairing method in 2D-ESPRIT using triangular antenna array," Electronics and Communications, Vol. 86, No. 6, 59-68, 2003.
doi:10.1002/ecja.10016

22. Wei, L. and Y. Hua, "A further remark on the shifted cross array for estimating 2-D directions of wave arrival," IEEE Transactions on Signal Processing, Vol. 40, No. 1, 493-497, 1993.

23. Chen, Y. M., J. H. Lee, and C. C. Yeh, "Two-dimensional angle-of-arrival estimation for uniform plannar arrays with sensor position errors," IEE Proceedings, Vol. 140, No. 2, 37-42, 1993.

24. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Transactions on Signal Processing, Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861

25. Liu, T. H. and J. M. Mendel, "Azimuth and elevation direction finding using arbitrary array geometries," IEEE Transactions on Signal Processing, Vol. 46, No. 7, 2061-2065, 1998.
doi:10.1109/78.700985

26. Dong, Y., Y. T. Wu, and G. S. Liao, "A novel method for estimating 2-D DOA," Journal of Xidian University, Vol. 30, No. 5, 569-573, 2003.

27. Kuroda, T., N. Kikuma, and N. Inagaki, "DOA estimation and pairing method in 2D-ESPRIT using triangular antenna array," Electrons. and Communications, Vol. 86, No. 6, 1505-1513, 2003.

28. Van der Veen, A. J., P. B. Ober, and E. F. Deprettere, "Azimuth and elevation computation in high resolution DOA estimation," IEEE Transactions on Signal Processing, Vol. 40, No. 7, 1828-1832, 1992.
doi:10.1109/78.143456

29. Filik, T. and T. Engin Tuncer, "2-D paired direction-of-arrival angle estimation with two parallel uniform linear arrays," International Journal of Innovative Computing, Information and Control, Vol. 7, No. 6, 3269-3279, Jun. 2011.

30. Hua, Y., T. K. Sarkar, and D. D. Weiner, "An L-shaped array for estimating 2-D directions of wave arrival," IEEE Trans. Antennas Propagation, Vol. 39, No. 2, 143-146, 1991.
doi:10.1109/8.68174

32. Tan, P., "Study of 2D DOA estimation for uniform circular array in wireless location system," International Journal of Computer Network and Information Security, Vol. 2, 54-60, 2010.
doi:10.5815/ijcnis.2010.02.08

33. Albagory, Y. and A. Ashour, "MUSIC 2D-DOA estimation using split vertical linear and circular arrays," International Journal of Computer Network and Information Security, Vol. 5, No. 8, 12-18, 2013.
doi:10.5815/ijcnis.2013.08.02