Vol. 38
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-04
Comparison of Packaging Technologies for RF MEMS Switch
By
Progress In Electromagnetics Research M, Vol. 38, 123-131, 2014
Abstract
The present paper describes an integrated approach for design, fabrication and encapsulation of RF MEMS switches in view of the optimal performance subsequent to packaging. `Top and bottom contact' fabrication approaches are explored using different RF MEMS switch topologies. In the `bottom contact package (BCP)' the packaging cap alignment is less critical as compared to the top contact packaging (TCP) approach where contact via is an integral part of the cap. In this case, the connection layout through silicon via holes is independent of the cavity geometry. For the devices under consideration, bulk etched silicon cavity height has been optimized to 50 μm for optimal RF performance e.g. isolation and insertion loss. Parasitic effects of top silicon cap are reduced by altering CPW impedance. Mechanical parameter damping is simulated for different cavity heights and found to be independent from cavity height after 20 μm onwards.
Citation
Deepak Bansal, Amit Kumar, Prem Kumar, Maninder Kaur, and Kamaljit Rangra, "Comparison of Packaging Technologies for RF MEMS Switch," Progress In Electromagnetics Research M, Vol. 38, 123-131, 2014.
doi:10.2528/PIERM14073002
References

1. Najafi, K., "Micropackaging technologies for integrated microsystems: Applications to MEMS and MOEMS," Proceedings of SPIE, Vol. 4979, 1-19, 2003.
doi:10.1117/12.484953

2. Rebeiz, G. M. and J. B. Muldavin, "RF MEMS switch and switch circuit," IEEE Microwave Magazine, Vol. 2, 59-71, 2001.
doi:10.1109/6668.969936

3. Myoung, S.-S., J.-G. Yook, S. Y. Eom, S.-I. Jeon, T. Wu, R.-L. Li, K. Lim, M. M. Tentzeris, and J. Laskar, "A reconfigurable active array antenna system with the frequency reconfigurable amplifiers based on RF MEMS switches," Progress In Electromagnetics Research C, Vol. 13, 107-119, 2010.
doi:10.2528/PIERC10030602

4. Jahanbakht, M., M. Naser-Moghadasi, and A. A. Lotfi-Neyestanak, "Low actuation voltage ka-band fractal MEMS switch," Progress In Electromagnetics Research C, Vol. 5, 83-92, 2008.

5. Saha, S. C., U. Hanke, H. Sagberg, T. A. Fjeldly, and T. Saether, "Tunable band-pass filter using RF MEMS capacitance and transmission line," Progress In Electromagnetics Research C, Vol. 23, 233-247, 2011.
doi:10.2528/PIERC11070607

6. Bansal, D., A. Kumar, A. Sharma, and K. J. Rangra, "Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch," Microsystem Technologies, 2014, DOI: 10.1007/s00542-014-2238-0.

7. Rangra, K., B. Margesin, L. Lorenzelli, F. Giacomozzi, C. Collini, M. Zen, G. Soncini, L. del Tin, and R. Gaddi, "Symmetric toggle switch --- A new type of RF MEMS switch for telecommunication applications: Design and fabrication," Sensors and Actuators A, 123-124, 505-514, 2005.

8. He, X.-J., Q. Wu, B.-S. Jin, K. Tang, M.-X. Song, J.-H. Yin, H.-C. Zhu, and , "Design and consideration of wafer level micropackaging for distributed RF MEMS phase shifters," Microsystem Technologies, Vol. 14, 575-579, 2008.
doi:10.1007/s00542-007-0438-6

9. Bansal, D., A. Kumar, A. Sharma, P. Kumar, and K. J. Rangra, "Design of novel compact antistiction and low insertion loss RF MEMS switch," Microsystem Technologies, Vol. 20, No. 2, 337-340, 2014.
doi:10.1007/s00542-013-1812-1

10. Bansal, D., A. Sharma, K. Maninder, and K. J. Rangra, "Design of vertical packaging technology for RF MEMS switch," Proc. SPIE 8549, 16th International Workshop on Physics of Semiconductor Devices, 854911, Oct. 15, 2012, doi:10.1117/12.924260.

11. Sharma, A., P. Jhanwar, D. Bansal, A. Kumar, M. Kaur, S. Pandey, P. Kumar, D. Kumar, and K. Rangra, "Comparative study of various release methods for gold surface micromachining," Journal of Micro/Nanolithography, MEMS, and MOEMS (JM3), Vol. 13, No. 1, 013005, 2014.
doi:10.1117/1.JMM.13.1.013005

12. Sharma, A., D. Bansal, M. Kaur, P. Kumar, D. Kumar, R. Sharma, and K. J. Rangra, "Fabrication and analysis of MEMS test structures for residual stress measurement," Sensors & Transducers Journal, Vol. 13, Special Issue, 21-30, 2011..

13. Van Driel, W. D., D. G. Yang, C. A. Yuan, M. van Kleef, and G. Q. Zhang, "Mechanical reliability challenges for MEMS packages: Capping," Microelectronics Reliability, Vol. 47, 1823-1826, 2007.
doi:10.1016/j.microrel.2007.07.033

14. Leedy, K. D., R. E. Strawser, R. Cortez, and J. L. Jack Ebel, "Thin-film encapsulated RF MEMS switches," Journal of Microelectromechanical Systems, Vol. 16, No. 2, 304-309, 2007.
doi:10.1109/JMEMS.2007.892915

15. Chiao, M. and L. Lin, "Device-level hermetic packaging of micro resonators by RTP aluminum-tonitride bonding," Journal of Microelectromech Systems, Vol. 15, No. 3, 515-522, 2006.
doi:10.1109/JMEMS.2006.876798

16. Lin, L., "MEMS post-packaging by localized heating and bonding," IEEE Transactions on Advanced Packaging, Vol. 23, No. 4, 608-616, 2000.
doi:10.1109/6040.883749

17. Lee, Y., S. Hong, M. Y. Park, S. C. Jung, and S. H. Lee, "Packaging considerations for reliability of electrically controlled MEMS VOA," Proc. SPIE, Vol. 5346, 160-165, 2004.
doi:10.1117/12.524603

18. Dib, N. I., P. B. Katehi, and G. E. Ponchak, "Analysis of shielded CPW discontinuities with air-bridges," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 469-472, 1991.

19. Muldavin, J. B. and G. M. Rebeiz, "High-isolation CPW MEMS shunt switches Part 1: Modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 6, 1045-1052, 2000.
doi:10.1109/22.904743