Vol. 38
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-26
Mutual Inductance Calculation Between Misalignment Coils for Wireless Power Transfer of Energy
By
Progress In Electromagnetics Research M, Vol. 38, 91-102, 2014
Abstract
In this paper we present a detailed theoretical analysis of lateral and angular misalignment effects in RF coils. Radio-frequency (RF) coils are used extensively in the design of implantable devices for transdermal power and data transmission. A design procedure is established to maximize coil coupling for a given configuration to reduce the effects of misalignment on transmission efficiency. Formulas are derived for the mutual inductance between all possible coil configurations including the coils of cross section, thin solenoids, pancakes and filamentary circular coils whose axes are laterally and angularly displaced. Coils are in air. In this approach we used the filament method and the mutual inductance between filamentary circular coils placed in any desired position. We completely describe all mathematical procedures to define coil positions that lead to relatively easy method for calculating the mutual inductance between previously mentioned coils. The practical coils in implantable devices fall into two categories: disk coils (pancakes) and solenoid coils. From the general approach for calculating the mutual inductance between coils of rectangular cross section with lateral and angular misalignments the mutual inductance between misalignment solenoids and disks will be calculated easily and accurately.
Citation
Slobodan Babic, Jose Martinez, Cevdet Akyel, and Bojan Babic, "Mutual Inductance Calculation Between Misalignment Coils for Wireless Power Transfer of Energy," Progress In Electromagnetics Research M, Vol. 38, 91-102, 2014.
doi:10.2528/PIERM14073007
References

1. Grover, F. W., "The calculation of the mutual inductance of circular filaments in any desired positions," Proceedings of the IRE, 620-629, Oct. 1944.

2. Snow, C., Formulas for Computing Capacitance and Inductance, Series: NBS circular 544, National Bureau of Standards, Washington, DC, Dec. 1954.

3. Dwight, H. B., Electrical Coils and Conductors, McGraw-Hill Book Company, Inc., New York, 1945.

4. Babic, S. I. and C. Akyel, "New analytic-numerical solutions for the mutual inductance of two coaxial circular coils with rectangular cross section in air," IEEE Trans. Mag., Vol. 42, No. 6, 1661-1669, Jun. 2006.
doi:10.1109/TMAG.2006.872626

5. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE Trans. Mag., Vol. 44, No. 7, 1743-1750, Jul. 2008.
doi:10.1109/TMAG.2008.920251

6. Babic, S. I., F. Sirois, C. Akyel, and C. Girardi, "Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formulas," IEEE Trans. Mag., Vol. 46, No. 9, 3591-3600, Sep. 2010.
doi:10.1109/TMAG.2010.2047651

7. Akyel, C., S. I. Babic, and M. M. Mahmoudi, "Mutual inductance calculation for non-coaxial circular air coils with parallel axes," Progress In Electromagnetics Research, Vol. 91, 287-301, 2009.
doi:10.2528/PIER09021907

8. Babic, S. I., F. Sirois, and C. Akyel, "Validity check of mutual inductance formulas for circular filaments with lateral and angular misalignments," Progress In Electromagnetics Research M, Vol. 8, 15-26, 2009.
doi:10.2528/PIERM09060105

9. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axysimmetric coil and a planar coil," IEEE Trans. Mag., Vol. 44, No. 4, 453-462, Apr. 2008.
doi:10.1109/TMAG.2008.917128

10. Conway, J. T., "Inductance calculations for noncoaxial coils using bessel functions," IEEE Trans. Mag., Vol. 43, No. 3, 1023-1034, Mar. 2007.
doi:10.1109/TMAG.2006.888565

11. Conway, J. T., "Inductance calculations for coils of rectangular cross section using bessel and struve functions," IEEE Trans. Mag., Vol. 46, No. 1, 75-81, Jan. 2010.
doi:10.1109/TMAG.2009.2026574

12. Babic, S. I., C. Akyel, F. Sirois, G. Lemarquand, R. Ravaud, and V. Lemarquand, "Calculation of the mutual inductance and the magnetic force between a thick circular coil of the rectangular cross section and a thin wall solenoid (integro-differential approach)," Progress In Electromagnetics Research B, Vol. 33, 221-237, 2011.
doi:10.2528/PIERB11062111

13. Conway, J. T., "Mutual inductance between thin coils with parallel axes,", Private Communication, Jun. 2011.

14. Kamon, M., M. J. Tsuk, and J. White, "FASTHENRY: A multipole accelerated 3D inductance extraction program," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1750-1758, Sep. 1994.
doi:10.1109/22.310584

15. Zeirhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Eng., Vol. 43, No. 7, 708-714, Jul. 1996.
doi:10.1109/10.503178

16. Puers, R., K. Van Schuylenbergh, M. Catrysse, and B. Hermans, "Wireless inductive transfer of power and data," Analog Circuit Design, 395-414, Springer, The Netherlands, 2006, ISBN: 978-1-4020-3884-6.

17. Soma, M., C. D. Galbraith, and R. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. 34, No. 4, 276-282, 1987.
doi:10.1109/TBME.1987.326088

18. Fotopoulou, K. and B. W. Flynn, "Wireless power transfer in loosely coupled links: Coil misalignment model," IEEE Trans. Mag., Vol. 44, No. 1, 453-462, Mar. 2011.

19. Jow, U. M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biom. Circ. Sys., Vol. 1, No. 3, 193-202, Sep. 2007.
doi:10.1109/TBCAS.2007.913130

20. Kim, J.W., H. C. Son, D. H. Kim, K. H. Kim, and Y. J. Park, "Efficiency of magnetic resonance WPT with two off-axis self-resonators," 2011 IEEE MTT-S. Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 127-130, 2011.

21. Heetderks, W. J., "RF powering of millimeter and submillimeter-sized neural prosthetic implants," IEEE Trans. Biomed. Eng., Vol. 35, 323-327, May 1988.
doi:10.1109/10.1388

22. Waters, B., "High Q resonant coupling and RF-DC conversion for wireless power transfer,", http://students.washington.edu/bhw2114/pubs/Inductive Coupling + RF Wireless Power.pdf.

23. Zhong, W. X., C. K. Lee, and S. Y. R. Hui, "Wireless power domino-resonator systems with non-coaxial axes and circular structures," IEEE Trans. on Power Electronics, Vol. 27, No. 11, 4750-4762, Nov. 2012.
doi:10.1109/TPEL.2011.2174655

24. Zhong, W. X., C. K. Lee, and . Y. R. Hui, "General analysis on the use of Tesla’s resonators in Domino forms for wireless power transfer," IEEE Trans. on Industrial Applications, Vol. 60, No. 1, 261-270, Jan. 2013.

25. Gradshteyn, I. S. and I. M. Rhyzik, Tables of Integrals, Series and Products, Dover, New York, 1972.

26. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Series 55, National Bureau of Standards Applied Mathematics, Washington DC, Dec. 1972.

27. Martinez, J., S. Babic, and C. Akyel, "On evaluation of inductance, DC resistance and capacitance of coaxial inductors at low frequencies," IEEE Trans. Mag., Vol. 50, No. 7, Jul. 2014, Doi: 10.1109/TMAG.2014.2303943.