Vol. 39
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-13
An Accurately Scalable Small-Signal Model for Millimeter-Wave Hemts Based on Electromagnetic Simulation
By
Progress In Electromagnetics Research M, Vol. 39, 77-84, 2014
Abstract
By using some special passive structures and correction of boundary conditions, a novel method to improve the electromagnetic (EM) simulation accuracy is proposed. With this method, the substrate parameters, such as thickness, loss, dielectric constant, loss tangent, sheet resistance, square capacitance and conductivity of the metal, can be described more accurately, and a lot of high frequency effects caused by skin effects, parasitic effects, coupling between micro-strip lines and fluctuation from the sheet resistance, etc. can also be simulated more precisely. Then an accurately scalable small-signal model for millimeter-wave HEMTs is proposed and presented. Combined with distributed modeling, pulsed IV and S parameter measurements, this model can be made scalable freely. The measurements agree with simulated results very well, which also proves that this method applied to the scalable small-signal models has a good consistency and accuracy.
Citation
Weibo Wang, Zhi-Gong Wang, Xu Ming Yu, Bin Zhang, and Feng Qian, "An Accurately Scalable Small-Signal Model for Millimeter-Wave Hemts Based on Electromagnetic Simulation," Progress In Electromagnetics Research M, Vol. 39, 77-84, 2014.
doi:10.2528/PIERM14080603
References

1. Goasguen, S., M. M. Tomeh, and S. M. El-Ghazaly, "Full wave analysis of FET fingers using various semiconductor physical models," 2001 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 415, 2001.
doi:10.1109/MWSYM.2001.966919

2. Robin, F., O. J. Homan, and W. Bachtold, "2D simulations of InGaAs/InAlAs/InP HEMTs with asymmetrical gate recess," 2000 International Conference on Indium Phosphide and Related Materials, 98, 2000.
doi:10.1109/ICIPRM.2000.850241

3. Imtiaz, S. M. S. and S. M. El-Ghazaly, "Performance of MODFET and MESFET, a comparative study including equivalent circuits using combined electromagnetic and solid-state simulator," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 7, 923, 1998.
doi:10.1109/22.701444

4. Cidronali, A., G. Leuzzi, G. Manes, et al. "Physical/electromagnetic pHEMT modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 830, 2003.
doi:10.1109/TMTT.2003.808580

5. Imtiaz, S. M. and S. M. El-Ghazaly, "Global modeling of millimeter-wave circuits: Electromagnetic simulation of amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12-2208, 1997.
doi:10.1109/22.643818

6. Laloue, A., J. B. David, R. Quere, et al. "Extrapolation of a measurement-based millimeter-wave nonlinear model of pHEMT to arbitrary-shaped transistors through electromagnetic simulations," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 6, 908, 1999.
doi:10.1109/22.769325

7. Tsai, R., M. Nishimoto, W. Akiyama, et al. "2nd generation device modeling for MMIC design & manufacturability," 2002 GaAs MANTECH Conference, 2002.

8. Hoque, M. E., M. Heimlich, J. Tarazi, et al. "Scalable HEMT model for small signal operations," 2010 International Conference on Electromagnetics in Advanced Applications, 309, 2010.
doi:10.1109/ICEAA.2010.5651288

9. Schwitter, B., S. A. Albahrani, A. Parker, et al. "Study of self-heating in GaAs pHEMTs using pulsed I-V analysis," 81st Microwave Measurement Conference, 1-6, 2013.

10. Ladbrooke, P. H. and S. R. Blight, "Low-field low-frequency dispersion of transconductance in GaAs MESFETs with implications for other rate-dependent anomalies," IEEE Transactions on Electron Devices, Vol. 35, No. 3, 257, 1988.
doi:10.1109/16.2449

11. Camacho, P. C. and C. S. Aitchison, "Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies," Electronics Letters, Vol. 21, No. 12, 528, 1985.
doi:10.1049/el:19850373

12. Brazil, T. J., "A universal large-signal equivalent circuit model for the GaAs MESFET," 21st European Microwave Conference, Vol. 2, 921, 1991.

13. Rizzoli, V., A. Costanzo, and G. Muzzarelli, "A universal electrothermal FET model suitable for general large-signal applications," Proc. 26th EuMC, Vol. 251, 1996.

14. Cojocaru, V. I. and T. J. Brazil, "A scalable general-purpose model for microwave FETs including DC/AC dispersion effects," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2248, 1997.
doi:10.1109/22.643826

15. Cidronali, A., G. Collodi, A. Santarelli, et al. "Small-signal distributed FET modeling through electromagnetic analysis of the extrinsic structure," 1998 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 287, 1998.
doi:10.1109/MWSYM.1998.689376

16. Kuwabara, T., Y. Kosaka, T. Eda, et al. "Accurate analysis of millimeter-wave MMIC power amplifier using distributed FET model," 1999 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 161, 1999.
doi:10.1109/MWSYM.1999.779448