Vol. 41
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-03-18
Theoretical Approach of Electromagnetic Shielding of Multilayer Conductive Sheets
By
Progress In Electromagnetics Research M, Vol. 41, 167-175, 2015
Abstract
This paper evaluates and compares the reflection loss, absorption loss and electromagnetic shielding effectiveness of a diverse range of shield. A design methodology is presented to yield these three quantities and propose a new relation of equivalent impedance for multilayer conductive sheets with considering the equivalence between single and the laminated structure. Analysis is carried out for the study of three shields: i) Polyaniline/polyurethane (PANI/PU), ii) Aluminum-Polyaniline/polyurethane-Aluminum (Al-(PANI/PU)-Al), iii) Nickel-Polyaniline/polyurethane-Aluminum (Ni-(PANI/PU)-Al) in the case of oblique incidence for electrical and magnetic polarization.
Citation
Sidi Mohamed Benhamou, Mohammed Hamouni, and Smain Khaldi, "Theoretical Approach of Electromagnetic Shielding of Multilayer Conductive Sheets," Progress In Electromagnetics Research M, Vol. 41, 167-175, 2015.
doi:10.2528/PIERM15020101
References

1. Reddy, K. B., J. V. S. S. Prasad, A. Srikanth, and K. A. Kishan, "Reduction of EMI for oblique of EMI waves," IEEE Students’ Technology Symposium (TechSym), 119-122, 2011.
doi:10.1109/TECHSYM.2011.5783813

2. Lin, J., H. Zhang, P. Lin, X. Yin, and G. Zeng, "The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite," IEEE Trans. on EMC, Vol. 56, No. 2, 328-334, 2014.

3. Zhou, J., J. He, G. Li, T. Wang, D. Sun, X. Ding, J. Zhao, and S. Wu, "Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers," J. Phys. Chem. C, Vol. 114, No. 17, 7611-7617, 2010.
doi:10.1021/jp911030n

4. Schutze, O., L. Jourdan, T. Lagrand, E. Talbi, and J. L. Wojkiewicz, "New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi-objective approach," Polym. Adv. Technol., Vol. 19, No. 7, 762-769, 2008.
doi:10.1002/pat.1030

5. Han, Y. and Y. Lu, "Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites," Composites Science and Technology, Vol. 69, No. 7, 1231-1237, 2009.
doi:10.1016/j.compscitech.2009.02.028

6. Nhan, H. N., J. L. Miane, J. L. Wojkiewicz, and R. S. Biscarro, "Lightweight electromagnetic shields using optimised polyaniline composites in the microwave band," Polym. Adv. Technol., Vol. 18, No. 4, 257-262, 2007.
doi:10.1002/pat.829

7. Préault, V., R. Corcolle, L. Daniel, and L. Pichon, "Effective permittivity of shielding composite materials for microwave frequencies," IEEE Trans. on EMC, Vol. 55, No. 6, 1178-1186, 2013.

8. Sihvola, A., "Electromagnetic mixing formulas and application," IEEE Electromagnetic Waves, IET, London, 1999.

9. Milton, G. W., The Theory of Composites, Cambridge University Press, 2002.
doi:10.1017/CBO9780511613357

10. Shi, D., Y. Gao, and Y. Shen, "Determination of shielding effectiveness of multilayer shield by making use of transmission line theory," IEEE 7th Inter. Symp. EMC and EM Ecolo., 26-29, 2007.

11. Gao, Y., Shielding and Grounding, Beijing University of Posts and Telecommunications Press, 2004.

12. Waber, M., "Reflection and transmission properties of a conductive slab in time domain," Antennas and Propagation Society International Symposium, 21-26, 1996.

13. Schulz, R. B. and V. C Plantz, "Shielding theory and practice," IEEE Trans. on EMC, Vol. 30, No. 3, 187-201, 1988.

14. Ma, S. W. and Y. Gao, "The equivalent transmission line method for calculating multi-layer plane shielding effectiveness," Chinese J. of Radio Sci., Vol. 4, 20-25, 1999.

15. Moser, J. R., "Low-frequency low-impedance electromagnetic shielding," IEEE Trans. on EMC, Vol. 30, No. 3, 202-210, 1988.

16. Clayton, R. P., Introduction to Electromagnetic Compatibility, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

17. Nhan, H. N., J. L. Miane, and J. L.Wojkiewicz, "Modeling of electromagnetic shielding effectiveness of multilayer conducting composites in the microwave band," First Inter. Conference on Commu. and Electro. (ICCE 06), 10-11, 2006.

18. Nhan, H. N., "Characterization and optimization of the electromagnetic properties of conducting polymer composites in the microwave band," Inter. J. of Electrical and Electronics Engi. Research, Vol. 3, No. 1, 209-220, 2013.

19. Celozzi, S., R. Araneo, G. Lovatr, and P. Clayton, Electromagnetic Shielding, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
doi:10.1002/9780470268483

20. Naishadham, K., "Shielding effectiveness of conductive polymers," IEEE Trans. on EMC, Vol. 34, No. 1, 47-50, 1992.

21. Benhamou, S. M. and M. Hamouni, "Determination of reflection loss, absorption loss, internal reflection and shielding effectiveness of a double electromagnetic shield of conductive polymer," J. Mater. Environ. Sci., Vol. 5, No. 6, 1982-1987, 2014.

22. Dharma Raj, C., R. G. Sasibhushana, P. V. Y. Jayasree, B. Srinu, and P. Lakshman, "Development of a three layer laminate for better electromagnetic compatibility performance at X-band," Information and Communication Technologies, 406-410, Springer, Berlin, Heidelberg, 2010.

23. Jayasree, P. V. Y., V. S. S. N. S. Baba, B. Prabhakar Rao, and P. Lakshman, "Analysis of shielding effectiveness of single, double and laminated shields for oblique incidence of EM waves," Progress In Electromagnetics Research B, Vol. 22, 187-202, 2010.
doi:10.2528/PIERB10051305