Vol. 43

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-08-19

Light Scattering from Two-Dimensional Periodic Arrays of Noble-Metal Disks and Complementary Circular Apertures

By Xiaowei Ji, Daiki Sakomura, Akira Matsushima, and Taikei Suyama
Progress In Electromagnetics Research M, Vol. 43, 119-133, 2015
doi:10.2528/PIERM15040201

Abstract

Numerical solution is presented for light scattering from two kinds of free-standing periodic arrays, that is, disks made of noble-metal and circular apertures perforated in a thin noble-metal sheet. The shapes of them are complementary to each other, and the circular areas are allocated along two orthogonal coordinates with the same periodicity. Using the generalized boundary conditions of the surface impedance type, we formulate the boundary value problem into a set of integral equations for unknown electric and magnetic current densities defined over the circular area. Employment of the method of moments allows us to solve the integral equations and give the expansion coefficients of the current densities, from which we can find reflected, transmitted, and absorbed powers. Dependence of the powers on the array parameters and wavelength is discussed in detail from the viewpoint of grating resonance. Special attention is paid to the extraordinary transmission which occurs in the arrays of apertures of sub-wavelength size by analytical derivation of the quasi-static solutions.

Citation


Xiaowei Ji, Daiki Sakomura, Akira Matsushima, and Taikei Suyama, "Light Scattering from Two-Dimensional Periodic Arrays of Noble-Metal Disks and Complementary Circular Apertures," Progress In Electromagnetics Research M, Vol. 43, 119-133, 2015.
doi:10.2528/PIERM15040201
http://www.jpier.org/PIERM/pier.php?paper=15040201

References


    1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

    2. Kim, K. Y., Plasmonics: Principles and Applications, InTech, 2012.
    doi:10.5772/2633

    3. Natarov, D. M., V. O. Byelobrov, R. Sauleau, T. M. Benson, and A. I. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires," Optics Express, Vol. 19, No. 22, 22176-22190, 2011.
    doi:10.1364/OE.19.022176

    4. Shapoval, O. V., R. Sauleau, and A. I. Nosich, "Modeling of plasmon resonances of multiple flat noble-metal nanostrips with a median-line integral equation technique," IEEE Trans. Nanotechnology, Vol. 12, No. 3, 442-449, 2013.
    doi:10.1109/TNANO.2013.2256365

    5. Shapoval, O. V., A. I. Nosich, and J. Ctyroky, "Resonance effects in the optical antennas shaped as finite comb-like gratings of noble-metal nanostrips," SPIE Proc. 8781 (Integrated Optics: Physics and Simulations), No. 87810U, 1-8, 2013.

    6. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
    doi:10.1038/35570

    7. Glushko, O., R. Brunner, R. Meisels, S. Kalchmair, and G. Strasser, "Extraordinary transmission in metal hole array-photonic crystal hybrid structures," Optics Express, Vol. 20, No. 15, 17174-17182, 2012.
    doi:10.1364/OE.20.017174

    8. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets," IEEE Antennas Propag. Mag., Vol. 35, No. 6, 14-25, 1993.
    doi:10.1109/74.248480

    9. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE, London, 1995.
    doi:10.1049/PBEW041E

    10. Shapoval, O. V., R. Sauleau, and A. I. Nosich, "Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nystrom-type algorithm," IEEE Trans. Antennas Propagat., Vol. 59, No. 9, 3339-3346, 2011.
    doi:10.1109/TAP.2011.2161547

    11. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2000.
    doi:10.1002/0471723770

    12. Amitay, N. and V. Galindo, "The analysis of circular waveguide phased arrays," Bell Syst. Tech. J., Vol. 47, No. 9, 1903-1932, 1968.
    doi:10.1002/j.1538-7305.1968.tb01096.x

    13. Chen, C. C., "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microwave Theory Tech., Vol. 19, No. 5, 475-481, 1971.
    doi:10.1109/TMTT.1971.1127548

    14. Chen, C. C., "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave Theory Tech., Vol. 21, No. 1, 1-6, 1973.
    doi:10.1109/TMTT.1973.1127906

    15. Koledintseva, M. Y., J. Huang, J. L. Drewniak, R. E. DuBroff, and B. Archambeault, "Modeling of metasheets embedded in dielectric layers," Progress In Electromagnetics Research B, Vol. 44, 89-116, 2012.
    doi:10.2528/PIERB12070910

    16. Hamdi, B., T. Aguili, and H. Baudrand, "Floquet modal analysis to modelize and study 2-D planar almost periodic structures in finite and infinite extent with coupled motifs," Progress In Electromagnetics Research B, Vol. 62, 63-86, 2015.
    doi:10.2528/PIERB14111602

    17. Matsushima, A., T. L. Zinenko, H. Nishimori, and Y. Okuno, "Plane wave scattering from perpendicularly crossed multilayered strip gratings," Progress In Electromagnetics Research, Vol. 28, 185-203, 2000.
    doi:10.2528/PIER99102801

    18. Matsushima, A., Y. Momoka, M. Ohtsu, and Y. Okuno, "Efficient numerical approach to electromagnetic scattering from three-dimensional periodic array of dielectric spheres using sequential accumulation," Progress In Electromagnetics Research, Vol. 69, 305-322, 2007.
    doi:10.2528/PIER06123002

    19. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

    20. Braver, I. M., P. Sh. Fridberg, K. L. Garb, and I. M. Yakover, "The behavior of the electromagnetic field near the edge of a resistive half-plane," IEEE Trans. Antennas Propagat., Vol. 36, No. 12, 1760-1768, 1988.
    doi:10.1109/8.14398

    21. Mittra, R., T. Itoh, and T. S. Li, "Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method," IEEE Trans. Microwave Theory Tech., Vol. 20, No. 2, 96-104, 1972.
    doi:10.1109/TMTT.1972.1127691

    22. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev., Vol. 6, 4370-4379, 1972.
    doi:10.1103/PhysRevB.6.4370

    23. Amitay, N. and V. Galindo, "On energy conservation and the method of moments in scattering problems," IEEE Trans. Antennas Propagat., Vol. 17, No. 7, 747-751, 1969.
    doi:10.1109/TAP.1969.1139549

    24. Lee, S. W., G. Zarrillo, and C. L. Law, "Simple formulas for transmission through periodic metal grids or plates," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 904-909, 1982.
    doi:10.1109/TAP.1982.1142923

    25. Widenberg, B., S. Poulsen, and A. Karlsson, "Scattering from thick frequency selective screens," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1303-1328, 2000.
    doi:10.1163/156939300X01265