Vol. 43

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-08-12

All-Optical Logic Gates Based on Spatial-Soliton Interactions in Optical Communication Spectral Region

By Yaw-Dong Wu
Progress In Electromagnetics Research M, Vol. 43, 71-79, 2015
doi:10.2528/PIERM15060501

Abstract

New designs of all-optical logic gates based on spatial-soliton interactions in optical communication spectral regions were proposed. The proposed structures are composed of local nonlinear Mach-Zehnder interferometer (MZI) waveguide structures with multi-input ports and two nonlinear output ports. They can be used to design various all-optical logic gates. The nonlinear MZI waveguide structure with local nonlinear waveguides functions like a phase shifter. It employs angular deflection of spatial solitons controlled by the phase modulation created in the local nonlinear MZI. The light-induced index changes in the local nonlinear MZI waveguide structures break the symmetry of structure and make the output signal beam propagate through different nonlinear output waveguides. By properly choosing the input control power, the spatial solitons will be switched to different output ports. The numerical results show that the proposed local nonlinear MZI waveguide structures could really function as all-optical logic gates in the optical communication spectral region.

Citation


Yaw-Dong Wu, "All-Optical Logic Gates Based on Spatial-Soliton Interactions in Optical Communication Spectral Region," Progress In Electromagnetics Research M, Vol. 43, 71-79, 2015.
doi:10.2528/PIERM15060501
http://www.jpier.org/PIERM/pier.php?paper=15060501

References


    1. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett., Vol. 24, 711-713, 1999.
    doi:10.1364/OL.24.000711

    2. Shi, T. T. and S. Chi, "Nonlinear photonic switching by using the spatial soliton collision," Opt. Lett., Vol. 15, 1123-1125, 1990.
    doi:10.1364/OL.15.001123

    3. Wu, Y. D., "New all-optical wavelength auto-router based on spatial solitons," Optics Express, Vol. 12, 4172-4177, 2004.
    doi:10.1364/OPEX.12.004172

    4. Villeneuve, A., K. A. Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, "Demonstration of all-optical demultiplexing at 1555 nm with an AlGaAs directional coupler," Electronics Lett., Vol. 29, 721-722, 1993.
    doi:10.1049/el:19930482

    5. Wu, Y. D., "Coupled-soliton all-optical logic device with two parallel tapered waveguides," Fiber and Integrated Optics, Vol. 23, 405-414, 2004.
    doi:10.1080/01468030490489725

    6. Ironside, N. and M. O’Neill, "Guided wave all-optical logic devices," IEE Colloquium on Non-Linear Optical Waveguides, 15/1-15/4, 1988.

    7. Jensen, S. M., "The nonlinear coherent coupler," IEEE Journal of Quantum Electronics, Vol. 18, 1580-1583, 1982.
    doi:10.1109/JQE.1982.1071438

    8. Thylen, L., "Beam-propagation method analysis of a nonlinear directional coupler," Opt. Lett., Vol. 11, 739-741, 1986.
    doi:10.1364/OL.11.000739

    9. Pertsch, T., U. Peschel, and F. Lederer, "All-optical switching in quadratically nonlinear waveguide arrays," Opt. Lett., Vol. 28, 102-104, 2003.
    doi:10.1364/OL.28.000102

    10. Jensen, S. M., "The nonlinear coherent coupler," IEEE J. Quantum Electron., Vol. 18, 1580-1583, 1982.
    doi:10.1109/JQE.1982.1071438

    11. Lattes, A., H. Haus, F. J. Leonberger, and E. P. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron., Vol. 19, 1718-1723, 1983.
    doi:10.1109/JQE.1983.1071766

    12. Kawaguchi, H., "Proposal for a new all-optical waveguide functional device," Opt. Lett., 411-413, 1985.
    doi:10.1364/OL.10.000411

    13. Shi, T. T. and S. Chi, "Nonlinear TE-wave propagation in a symmetric, converging, single-mode Y-junction waveguide," J. Opt. Soc. Amer. B, Vol. 9, 1338-1340, 1992.
    doi:10.1364/JOSAB.9.001338

    14. Wa, P. L. K., J. E. Sitch, N. J. Mason, J. S. Roberts, and P. N. Robson, "All-optical multiple-quantum-well wave-guide switch," Electronics Lett., Vol. 21, 26-28, 1985.
    doi:10.1049/el:19850021

    15. Finlayson, N., W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, "Picosecond switching induced by saturable absorption in a nonlinear directional coupler," Appl. Phys. Lett., Vol. 53, 1144-1146, 1988.
    doi:10.1063/1.100039

    16. Villeneuve, A., C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchinson, and C. N. Ironside, "Uitrafast all-optical switching in semiconductor nonlinear directional coupler at half band gap," Appl. Phys. Lett., Vol. 61, 147-149, 1992.
    doi:10.1063/1.108200

    17. Al-hemyai, K., J. S. Aitchison, C. N. Ironside, G. T. Kennedy, R. S. Grant, and W. Sibbett, "Ultrafast all-optical switching in GaAlAs integrated interferometer in 1.55 μm spectral region," Electronics Lett., Vol. 28, 1090-1092, 1992.
    doi:10.1049/el:19920689

    18. Nakamura, S., K. Tajima, and Y. Sugimoto, "Experimental investigation on high-speed switching characteristics of a novel symmetric Mach-Zehnder all-optical switch," Appl. Phys. Lett., Vol. 65, 283-285, 1994.
    doi:10.1063/1.112347

    19. Silberberg, Y. and B. G. Sfez, "All-optical phase- and power-controlled switching in nonlinear waveguide junctions," Opt. Lett., Vol. 13, 1132-1134, 1988.
    doi:10.1364/OL.13.001132

    20. Fouckhardt, H. and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Amer. B, Vol. 7, 803-809, 1990.
    doi:10.1364/JOSAB.7.000803

    21. Sabini, J. P., N. Finlayson, and G. I. Stegeman, "All-optical switching in nonlinear X-junctions," Appl. Phys. Lett., Vol. 55, 1176-1178, 1989.
    doi:10.1063/1.101689

    22. Aitchison, J. S., A. Villeneuve, and G. I. Stegeman, "All-optical switching in a nonlinear GaAlAs X junction," Opt. Lett., Vol. 18, 1153-1155, 1993.
    doi:10.1364/OL.18.001153

    23. Murata, H., M. Izutsu, and T. Sueta, "All-optical switching in new nonlinear X-junctions," Proc. Nonlinear Optics, Vol. 90, 63-64, 1990.

    24. Yokota, H., K. Kimura, and S. Kurazono, "Numerical analysis of an optical X coupler with a nonlinear dieletric region," IEICE Trans. Electron., Vol. E78-C, 61-66, 1995.

    25. Pramoono, Y. H., M. Geshiro, T. Kitamura, and S. Sawa, "Self-switching in crossing waveguides with three channels consisting of nonlinear material," IEICE Trans. Electron., Vol. E82-C, 111-118, 1999.

    26. Wu, Y. D., M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integrated Opt., Vol. 20, 517-524, 2001.
    doi:10.1080/014680301750413476

    27. Pramono, Y. H., M. Geshiro, T. Kitamura, and S. Sawa, "Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear material," IEICE Trans. Electron., Vol. E83-C, 1755-1761, 2000.

    28. Pramono, Y. H., "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater., Vol. 10, 209-222, 2001.
    doi:10.1142/S0218863501000553

    29. Wu, Y. D., "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt, Vol. 23, 387, 2004.
    doi:10.1080/01468030490489707

    31. Wu, Y. D., "New all-optical switch based on the spatial soliton repulsion," Optics Express, Vol. 14, 4005, 2006.
    doi:10.1364/OE.14.004005

    32. Wu, Y. D., M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 15, 9883, 2007.
    doi:10.1364/OE.15.009883

    33. Radwell, N., C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, "Switching spatial dissipative solitons in a VCSEL with frequency selective feedback," Eur. Phys. J. D, Vol. 59, 121, 2010.
    doi:10.1140/epjd/e2010-00124-6

    34. Sarma, K., "Vector soliton switching in a fiber nonlinear directional coupler," Opt. Comm., Vol. 284, 186, 2011.
    doi:10.1016/j.optcom.2010.09.001

    35. Hatami, M., R. Attarzadeh, and A. Gharaati, "Design of an ultra-fast all-optical dark soliton switch in a three-core nonlinear directional coupler (TNLDC) made of chalcogenide glasses," J. Nonlinear Optic. Phys. Mat., Vol. 21, 1250038, 2012.
    doi:10.1142/S0218863512500385

    36. Karimi, S., M. E. Heidari, and F. Forootan, "Design and modellingof a 1 × N all-optical nonline Mach-Zehnder switch controlled by wavelength and input power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
    doi:10.2528/PIERM12100504

    37. Liu, W.-J. and M. Lei, "All-optical soliton switching for the asymmetric fiber couplers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2288-2297, 2013.
    doi:10.1080/09205071.2013.839961

    38. Zhong, H., B. Tian, Y. Jiang, M. Li, P. Wang, and W.-J. Liu, "All-optical soliton switching for the asymmetric fiber couplers," Eur. Phys. J. D, Vol. 67, 1, 2013.

    39. Wu, Y. D., "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron., Vol. 11, 307, 2005.

    40. Serak, S. V., N. V. Tabiryan, M. Peccianti, and G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Techn. Lett., Vol. 18, 1287, 2006.
    doi:10.1109/LPT.2006.875318

    41. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 16, 248, 2008.
    doi:10.1364/OE.16.000248

    42. Corbelli, M. M., F. Garzia, and R. Cusani, "All-optical EXOR for cryptographic application based on spatial solitons," J. of Info. Security, Vol. 4, 180, 2013.
    doi:10.4236/jis.2013.43020

    43. Kubota, Y. and T. Odagaki, "Logic gates based on soliton transmission in the Toda lattice," Adv. in Appl. Phys., Vol. 1, 29, 2013.

    44. Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, W. Manrakhan, M. Savescu, and A. Biswas, "Dispersive optical solitons with Schr¨odinger-Hirota equation," J. of Nonlinear Opt. Phys. and Mater., Vol. 23, 1450014, 2014.
    doi:10.1142/S0218863514500143

    45. Bhrawy, A. H., A. A. Alshaery, E. M. Hilal, K. R. Khan, M. F. Mahmood, and A. Biswas, "Optical soliton in nonlinear directional couplers with spatio-temporal dispersion," J. of Modern Opt., Vol. 61, 442-459, 2014.

    46. Savescu, M., S. Johnson, A. H. Kara, S. H. Crutcher, R. Kohl, and A. Biswas, "Convention laws for optical solitons with spatio-tenporal dispersion," Journal of Electromagnetic Waves and Applications, Vol. 28, 242-252, 2014.
    doi:10.1080/09205071.2013.863716

    47. Alshaery, A. A., A. H. Bhrawy, A. E. M. Hilal, and A. Biswas, "Bright and singular solitons in quadratic nonlinear media," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 3, 275-280, 2014.
    doi:10.1080/09205071.2013.861752

    48. Savescu, M., K. R. Khan, R. W. Kohl, L. Moraru, A. Yildirim, and A. Biswas, "Optical soliton perturbation with improved nonlinear Schrödinger’s equation in nanofibers," J. of Nanoelectron. and Optoelectron., Vol. 8, 208-220, 2013.
    doi:10.1166/jno.2013.1459

    49. Kohl, R., A. Biswas, D. Milovic, and E. Zerrad, "Optical soliton perturbation in a non-Kerr law media," Opt. and Laser Tech., Vol. 40, 647-662, 2008.
    doi:10.1016/j.optlastec.2007.10.002

    50. Biswas, A., M. Fessak, S. Johnson, S. Beatrice, D. Milovic, Z. Jovanoski, R. Kohl, and F. Majid, "Optical soliton perturbation in non-Kerr law media: Tarveling wave solution," Opt. and Laser Tech., Vol. 44, 1775-1780, 2012.

    51. Biswas, A., A. J. M. Jawad, W. N. Manrakhan, A. K. Sarma, and K. R. Khan, "Optical solitons and complexitions of the Schr¨odinger-Hirota equation," Opt. and Laser Tech., Vol. 44, 2265-2269, 2012.
    doi:10.1016/j.optlastec.2012.02.028

    52. Biswas, A., D. Milovic, M. Savescu, M. F. Mahmood, K. R. Khan, and R. Kohl, "Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger’s equatin by semi-inverse variational principle," J. of Nonlinear Opt. Phys. and Mater., Vol. 12, 1250054, 2012.
    doi:10.1142/S0218863512500543

    53. Xu, Y., Z. Jovanoski, A. Bouasla, H. Triki, L. Moraru, and A. Biswas, "Optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity," J. of Nonlinear Opt. Phys. and Mater., Vol. 22, 1350035, 2013.
    doi:10.1142/S0218863513500355

    54. Kuo, C. W., S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Optics Express, Vol. 15, 2499, 2007.
    doi:10.1364/OE.15.002499

    55. Chung, Y. and N. Dagli, "An assessment of finite difference beam propagation method," IEEE J. Quantum Electron., Vol. 26, 1335-1339, 1990.
    doi:10.1109/3.59679

    56. Stegeman, G. I., E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, "Third order nonlinear integrated optics," J. Lightwave Technol., Vol. 6, 953-990, 1988.
    doi:10.1109/50.4087