Vol. 44
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-13
Low-Loss Complex Permittivity and Permeability Determination in Transmission/Reflection Measurements with Time-Domain Smoothing
By
Progress In Electromagnetics Research M, Vol. 44, 69-79, 2015
Abstract
An approach is proposed for determination of the complex permittivity and permeability of low-loss materials, eliminating half-wavelength resonances occurring in transmission/reflection (T/R) measurements. To this end, we apply the time-domain smoothing for removing resonant artifacts from the wave impedance obtained with the conventional T/R method, with an assumption that we do not have such artifacts in the refractive index. Accordingly, the permittivity and permeability are found from the smoothed wave impedance and conventional refractive index. In this paper, our method is validated by measurements for two different low-loss materials, nylon and lithium ferrite, and those results are discussed. Further, results from the present approach are compared to those from the approximate approach derived in our previous work.
Citation
Sung Kim, and Jeffrey R. Guerrieri, "Low-Loss Complex Permittivity and Permeability Determination in Transmission/Reflection Measurements with Time-Domain Smoothing," Progress In Electromagnetics Research M, Vol. 44, 69-79, 2015.
doi:10.2528/PIERM15073010
References

1. Von Hippel, A. R., Dielectric Materials and Application, MIT Press, MA, 1961.

2. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, NJ, 2004.
doi:10.1002/0470020466

3. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle. R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index materials,", National Institute of Standards and Technology Technical Note 1536, 2005.

4. Baker-Jarvis, J., M. D. Janezic, and D. C. De Groot, "High-frequency dielectric measurements," IEEE Instrumentation and Measurement Magazine, Vol. 13, No. 2, 24-31, 2010.
doi:10.1109/MIM.2010.5438334

5. Nicolson, A. M. and G. F. Ross, "Measurement of intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

6. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

7. Ligthart, L. P., "Fast computational techniques for accurate permittivity determination using transmission line methods," IEEE Trans. Microw. Theory Tech., Vol. 31, No. 3, 249-254, 1983.
doi:10.1109/TMTT.1983.1131471

8. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method ," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

9. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line method for measuring permittivity and permeability,", National Institute of Standards and Technology Technical Note 1355-R, 1993.
doi:10.1109/22.57336

10. Boughriet, A.-H., C. Legrand, and A. Chapton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032

11. 11, S. and J. Baker-Jarvis, "An approximate approach to determining the permittivity and permeability near λ/2 resonances in transmission/reflection measurements," Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014.

12. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160

13. Qi, J., H. Kettunen, H. Wallen, and A. Sihvola, "Compensation of Fabry-Pérot resonances in homogenization of dielectric composites," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1057-1060, 2010.
doi:10.1109/LAWP.2010.2091103

14. Liu, X.-X., D. A. Powell, and A. Alù, "Correcting the Fabry-Pérot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, 235106, 2011.
doi:10.1103/PhysRevB.84.235106

15. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

17. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Aaron, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226-2240, 2011.
doi:10.1109/TAP.2011.2143679

18. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. R. Baker-Jarvis, "Effective material property extraction of a metamaterial by taking boundary effects into account at TE/TM polarized incidence," Progress In Electromagnetics Research B, Vol. 36, 1-33, 2012.

19. Lefrançois, S., D. Pasquet, and G. Mazé-Merceur, "A new model for microwave characterization of composite materials in guided-wave medium," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 9, 1557-1562, 1996.
doi:10.1109/22.536604

20. Starostenko, S. N. and A. P. Vinogradov, "The reflectivity discrepancy method for the determination of the permittivity and permeability of complex materials," IEEE Trans. Instrum. Meas., Vol. 51, No. 1, 125-132, 2002.
doi:10.1109/19.989915

21. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
doi:10.1163/156939310792149759

22. James, J. F., A Student’s Guide to Fourier Transforms: With Applications in Physics and Engineering, 3rd Ed., Cambridge University Press, NY, 2011.
doi:10.1017/CBO9780511762307

23. Hill, D. A., "Reflection coefficient of a waveguide with slightly uneven walls," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 1, 244-252, 1989.
doi:10.1109/22.20045

24. Taylor, B. N. and C. E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results,", National Institute of Standards and Technology Technical Note 1297, 1994.