Vol. 46
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-09
The Optimization of Switching Scheme in Multi-Layer Phase-Modulated Surface and Its Influence on Scattering Properties
By
Progress In Electromagnetics Research M, Vol. 46, 183-192, 2016
Abstract
To improve absorbing properties of phase-modulated surface (PMS), the multi-active-layer PMS composed of multiple active frequency-selective surface (AFSS) layers and one background plane is theoretically studied using time-modulation theory in this paper. The optimization of PMS's switching scheme using differential evolution (DE) algorithm is also proposed for minimizing scattering echo energy at the incident frequency. We provide analytical formulation for the scattering problem and obtain the angular scattering pattern of PMS after optimization. Simulation results indicate that the optimized switching scheme is beneficial for reducing the spatial coverage of scattering echo at incident frequency. This coverage can be further confined by the increasing number of active layers in PMS. Furthermore, it is shown that floor effect appears when the number of active layers reaches a certain value, which limits the PMS structure conversely.
Citation
Yi Fu, and Tao Hong, "The Optimization of Switching Scheme in Multi-Layer Phase-Modulated Surface and Its Influence on Scattering Properties," Progress In Electromagnetics Research M, Vol. 46, 183-192, 2016.
doi:10.2528/PIERM15122903
References

1. Nair, R. U. and R. M. Jha, "Broadbanding of A-sandwich radome using Jerusalem cross frequency selective surface," CMC: Computers, Materials & Continua, Vol. 37, No. 2, 109-121, 2013.

2. Sazegar, M., Y. Zheng, C. Kohler, et al. "Beam steering transmitarray using tunable frequency selective surface with integrated ferroelectric varactors," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5690-5699, 2012.
doi:10.1109/TAP.2012.2213057

3. Wu, P., F. Bai, Q. Xue, et al. "Use of frequency-selective surface for suppressing radio-frequency interference from wireless charging pads," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 3969-3977, 2014.
doi:10.1109/TIE.2013.2284136

4. Tennant, A. and B. Chambers, "A single-layer tunable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, 2004.
doi:10.1109/LMWC.2003.820639

5. Chambers, B. and A. Tennant, "The phase-switched screen," IEEE Antennas and Propagation Magazine, Vol. 46, No. 6, 23-37, 2004.
doi:10.1109/MAP.2004.1396733

6. Chambers, B. and A. Tennant, "A smart radar absorber based on the phase-switched screen," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 394-403, 2005.
doi:10.1109/TAP.2004.838795

7. Tennant, A. and B. Chambers, "Experimental performance of a phase-switched screen against modulated microwave signals," IEE Proceedings-Radar, Sonar and Navigation, Vol. 152, No. 1, 29-33, 2005.
doi:10.1049/ip-rsn:20041191

8. Chambers, B. and A. Tennant, "FDTD modelling of active radar absorbers," IEEE Antennas and Propagation Society International Symposium, 6027-6030, 2007.

9. Tennant, A. and B. Chambers, "Time-switched array analysis of phase-switched screens," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 808-812, 2009.
doi:10.1109/TAP.2009.2013448

10. Chambers, B. and A. Tennant, "Reflectivity null tuning in multi-layer phase-switched active radar absorbers," IEE Proceedings-Radar, Sonar and Navigation, Vol. 152, No. 4, 245-247, 2005.
doi:10.1049/ip-rsn:20050014

11. Tennant, A. and B. Chambers, "Experimental two-layer adaptive phase-switched screen," Electronics Letters, Vol. 37, No. 23, 1379-1380, 2001.
doi:10.1049/el:20010952

12. Xu, W., Y. He, P. Kong, et al. "An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications," Journal of Applied Physics, Vol. 118, No. 18, 184903, 2015.
doi:10.1063/1.4934683

13. Tennant, A. and B. Chambers, "RCS reduction of spiral patch antenna using a PSS boundary," IEE Proceedings-Radar, Sonar and Navigation, Vol. 152, No. 4, 248-252, 2005.
doi:10.1049/ip-rsn:20045048

14. Tennant, A. and B. Chambers, "SSB-type frequency scattering from a single-layer PSS with interlaced element modulation," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 284-285, 2006.
doi:10.1109/LAWP.2006.876968

15. Tennant, A. and B. Chambers, "In-phase and quadrature modulated scatterer," Electronics Letters, Vol. 38, No. 11, 498-499, 2002.
doi:10.1049/el:20020349

16. Chambers, B., A. Tennant, and A. Melnikov, "Detection of a radar signal reflected from a phase-modulated surface," IEE Proceedings-Radar, Sonar and Navigation, Vol. 153, No. 4, 316-324, 2006.
doi:10.1049/ip-rsn:20060010

17. Balci, O., E. O. Polat, N. Kakenov, et al. "Graphene-enabled electrically switchable radar-absorbing surfaces," Nature Communications, Vol. 6, 6628-6628, 2014.

18. Zabri, S. N., R. Cahill, G. Conway, et al. "Inkjet printing of resistively loaded FSS for microwave absorbers," Electronics Letters, Vol. 51, No. 13, 999-1001, 2015.
doi:10.1049/el.2015.0696

19. Xia, T., Y. Cao, N. A. Oyler, et al. "Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles," ACS Applied Materials & Interfaces, Vol. 7, No. 19, 10407-10413, 2015.
doi:10.1021/acsami.5b01598