Vol. 46
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-08
Optimized Design of W-Band Quasi-Optical Lens by Using Optical Simulator and Numerical Analysis
By
Progress In Electromagnetics Research M, Vol. 46, 173-181, 2016
Abstract
A large aperture quasi-optical dielectric lens antenna for passive imaging at W-band frequency is proposed. The lens is designed to obtain best resolution at a designate distance of 3.5 m from it. The lens has biconvex aspheric surface to achieve low aberration. The initial parameters of the optical path are obtained with Gaussian beam method, and then the optical simulator ZEMAX is applied to optimize the shape of the lens which improves design efficiency greatly. A hybrid numerical method is used to analyze near field distribution of the lens, and the final design of the lens is evaluated and determined by the results. The method is the combining of ANSOFT HFSS software, ray tracing method and integration algorithm based on Huygens' Principle. It is feasible and efficient for the analysis of various lens antennas, such as large aperture lens antennas which are difficult to be simulated by commercial electromagnetic simulation software. The lens is fabricated with HDPE. Experimental results show that its 3 dB beam size is 29 mm at distance of 3.5 m, which is in good agreement with theoretical calculation. The measured patterns on the image plane show that the lens has 0.3 dB decrease of field intensity in field view of 690 mm. Imaging result shows that the lens is a good candidate for focal plane imaging.
Citation
Qike Chen, Yong Fan, and Kaijun Song, "Optimized Design of W-Band Quasi-Optical Lens by Using Optical Simulator and Numerical Analysis," Progress In Electromagnetics Research M, Vol. 46, 173-181, 2016.
doi:10.2528/PIERM16010802
References

1. Yujiri, L., M. Shoucri, and P. Moffa, "Passive millimeter wave imaging," IEEE Microwave Magazine, Vol. 4, No. 3, 39-50, 2003.
doi:10.1109/MMW.2003.1237476

2. Stanko, S., D. Notel, A. Wahlen, et al. "Active and passive mm-wave imaging for concealed weapon detection and surveillance," The 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 1-2, 2008.

3. Pati, P. and P. Mather, "Open area concealed weapon detection system," Proceeding of SPIE 8017, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVI, 801702-1-801702-9, Orlando, 2011.

4. Shi, X. and M. H. Yang, "Development of passive millimeter wave imaging for concealed weapon detection indoors," Microwave and Optical Technology Letters, Vol. 56, No. 7, 1701-1706, 2014.
doi:10.1002/mop.28420

5. Sato, S., K. Sawaya, K. Mizuno, et al. "Passive millimeter-wave imaging for security and safety applications," Proceedings of SPIE 7671, Terahertz Physics, Devices, and Systems, 76710V-1-76710V-11, 2010.

6. Kim, W. G., N. W. Moon, M. K. Singh, et al. "Characteristic analysis of aspheric quasi optical lens antenna in millimeter-wave radiometer imaging system," Applied Optics, Vol. 52, No. 6, 1122-1131, 2013.
doi:10.1364/AO.52.001122

7. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404

8. Qiu, J., Z. Zhuang, X. Han, and F. Xie, "Design of quasi-optical subsystem for millimeter-wave imaging system," International Symposium on Antennas Propagation & Em Theory, 530-533, 2008.

9. Volkov, P. V., Yu. I. Belov, A. V. Goryunov, I. A. Illarionov, et al. "Aspherical single-lens objective for radio-vision systems of the millimeter-wavelength range," Technical Physics, Vol. 59, No. 4, 588-593, 2014.
doi:10.1134/S1063784214040264

10. Richter, J., A. Hofmann, and L. P. Schmidt, "Dielectric wide angle lenses for millimeter-wave focal plane imaging," European Microwave Conference, 1-4, 2001.

11. Goldsmith, P. F., "Quasi-optical techniques," Proceedings of the IEEE, Vol. 80, No. 11, 1729-1747, 1992.
doi:10.1109/5.175252

12. Goldsmith, P. F., Quasi Optical Systems: Gaussian Beam Quasi Optical Propagation and Applications, 130-133, IEEE Press/Chapman & Hall Publishers, Piscataway, 1998.

13. Zhang, Y., J. Wang, Z. Zhao, and J. Yang, "Numerical analysis of dielectric lens antennas using a ray-tracing method and HFSS software," IEEE Antennas & Propagation Magazine, Vol. 50, No. 4, 94-101, 2008.
doi:10.1109/MAP.2008.4653666

14. Kim, W.-G., N.-W. Moon, J. Kang, and Y.-H. Kim, "Loss Measuring of large aperture quasi-optics for W-band imaging radiometer system," Progress In Electromagnetics Research, Vol. 125, 295-309, 2012.
doi:10.2528/PIER12010502

15. Lee, S.-W., M. S. Sheshadri, V. Jamnejad, and R. Mittra, "Refraction at a curved dielectric interface: geometrical optics solution," IEEE Transactions on Microwave Theory and Techniques, Vol. 82, No. 1, 12-19, 1982.