Vol. 48
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-05-18
A Method for Ice-Thickness Detecting and Ice-Section Imaging by Using FMCW-SAR Algorithm
By
Progress In Electromagnetics Research M, Vol. 48, 113-124, 2016
Abstract
Sea ice plays an important role in global climate. Many researches focus on the measurement of the sea ice thickness. In this paper, we present a method for the ice-detecting combining frequencymodulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) technology. It can provide a good resolution both in the range dimension and the azimuth one. Then a simulation is conducted to verify the accuracy and the feasibility of this algorithm. The physical properties of the sea ice, such as reflection and scatter properties of the ice surface and the transmission characteristic when the electromagnetic wave travels through the ice, are considered in the simulation. The results of the simulation demonstrate that this algorithm has a good performance in ice penetrating.
Citation
Rui Zhao, Yu Tian, Ling Tong, and Bo Gao, "A Method for Ice-Thickness Detecting and Ice-Section Imaging by Using FMCW-SAR Algorithm," Progress In Electromagnetics Research M, Vol. 48, 113-124, 2016.
doi:10.2528/PIERM16021801
References

1. Etkins, R. and E. S. Epstein, "The rise of global mean sea level as an indication of climate change," Science, Vol. 215, 287-289, 15 Jan. 1982.
doi:10.1126/science.215.4530.287

2. ACIA Arctic Climate Impact Assessment, 1042, Cambridge University Press, New York City, New York, 2005.

3. Gogineni, S., Z. Wang, J. B. Yan, et al. "Wideband radar for ice sheet sounding and imaging," General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI. IEEE, 1, 2014.
doi:10.1109/URSIGASS.2014.6929593

4. Dall, J., A. Kusk, S. S. Kristensen, et al. "P-band radar ice sounding in Antarctica," Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. IEEE, 1561-1564, 2012.
doi:10.1109/IGARSS.2012.6351098

5. Gogineni, S., J. B. Yan, D. Gomez, et al. "Ultra-wideband radars for remote sensing of snow and ice," Microwave and RF Conference, 2013 IEEE MTT-S International, IEEE, 1-4, 2013.
doi:10.1109/IMaRC.2013.6777743

6. Wu, C., X. Zhang, J. Shi, et al. "Radar signal simulation on investigation of subsurface structure by radar ice depth sounder," Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, IEEE, 4848-4851, 2014.

7. Han, H. and H. Lee, "Radar backscattering of lake ice during freezing and thawing stages estimated by ground-based scatterometer experiment and inversion from genetic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 5, 3089-3096, 2013.
doi:10.1109/TGRS.2012.2214393

8. Dagdeviren, B., K. Y. Kapusuz, and A. Kara, "A modular FMCW radar RF front end design: Simulation and implementation," Signal Processing and Communications Applications Conference (SIU), 2014 22nd. IEEE, 1762-1765, 2014.
doi:10.1109/SIU.2014.6830591

9. Kanagaratnam, P., S. Gogineni, N. Gundestrup, and L. Larsen, "High-resolution radar mapping of internal layers at the North Greenland Ice Core Project," Journal of Geophysical Research, Vol. 106, No. D24, 33,799-33,812, 2001.
doi:10.1029/2001JD900191

10. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, 2005.

11. Luo, Y., H. Song, R.Wang, et al. "Signal processing of Arc FMCW SAR," IEEE 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 412-415, 2013.

12. Smith, R. L., Micro Synthetic Aperture Radar Using FM/CW Technology, Brigham Young University, 2002.

13. Krishnan, S., Modeling and Simulation Analysis of An FMCW Radar for Measuring Snow Thickness, University of Kansas, 2000.

14. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 2, Artech House, Norwood, MA, 1986.

15. Komarov, A. S., D. Isleifson, D. G. Barber, et al. "Modeling and measurement of C-band radar backscatter from snow-covered first-year sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 7, 4063-4078, 2015.
doi:10.1109/TGRS.2015.2390192

16. Cui, S. G., H. S. Liu, H. Yi, and J.-L. Wu, "Surface-related multiple elimination on high-resolution geopulse profile," China Ocean Engineering, Vol. 2, 331-339, 2008.

17. Kikuta, T. and H. Tanaka, "Ground probing radar system," IEEE Aerospace and Electronic Systems Magazine, Vol. 5, No. 6, 23-26, 1990.
doi:10.1109/62.54640

18. Nielsen, U. and J. Dall, "Direction-of-Arrival estimation for radar ice sounding surface clutter suppression," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 9, 5170-5179, 2015.
doi:10.1109/TGRS.2015.2418221

19. Dudek, M., D. Kissinger, R. Weigel, et al. "A versatile system simulation environment for millimeter-wave phased-array FMCW-radar sensors for automotive applications," Microwave Conference Proceedings (APMC), 2011 Asia-Pacific. IEEE, 1478-1481, 2011.