Vol. 50
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-12
Design of Polarization-Insensitive Dual Band Metamaterial Absorber
By
Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016
Abstract
A new design has been proposed for a single layer polarization-insensitive dual-band metamaterial absorber at C and X bands. The proposed structure consists of a periodic arrangement of a circular resonator embedded in a square resonator. A commercially available FR4 dielectric has been used as a substrate with metallic grounded bottom and imprints on the other side. This structure resonates at 5.5 GHz and 8.9 GHz with absorptivity of 99.8% and 99.97%, respectively. It exhibits polarization-insensitive behaviour for Transverse Electric and Transverse Magnetic polarization under oblique and normal angles of incidence. The field distributions have been studied for better understanding of the absorption mechanism. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. This polarization-insensitive metamaterial absorber with its ease of design and nearly unity absorption can be used for radar applications.
Citation
Sekar Ramya, and Inabathini Srinivasa Rao, "Design of Polarization-Insensitive Dual Band Metamaterial Absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
doi:10.2528/PIERM16070501
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics USPEKI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005.
doi:10.1002/0471754323

4. Capolino, F., Metamaterials Handbook, CRC Press, 2009.

5. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 03661, 2005.

6. Majedi, M. S. and A. R. Attari, "A compact and broadband metamaterial-inspired antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 345-348, 2013.
doi:10.1109/LAWP.2013.2248072

7. Li, L. W., Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. Martin, "A broadband and high-gain metamaterial microstrip antenna," Appl. Phys. Lett., Vol. 96, 164101, 2010.
doi:10.1063/1.3396984

8. Mandal, M. K., P. Mondal, S. Sanyal, and A. Chakrabarty, "Low insertion-loss sharp-rejection and compact microstrip low-pass filters," IEEE Microwave and Wireless Components Letters, Vol. 16, 600-602, 2006.
doi:10.1109/LMWC.2006.884777

9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

10. Bilotti, F., L. Nucci, and L. Vegni, "An SRR-based microwave absorber," Microwave Opt. Technol. Lett., Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891

11. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1.4, 224-227, 2007.
doi:10.1038/nphoton.2007.28

12. Andrea, A. and E. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 7, No. 1, 016623, 2005.

13. Hwang, J. N. and F. C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 54, 3763-3770, 2006.
doi:10.1109/TAP.2006.886501

14. Faruque, M. R. I. and M. T. Islam, "Novel triangular metamaterial design for electromagnetic absorption reduction in human head," Progress In Electromagnetics Research, Vol. 141, 463-478, 2013.
doi:10.2528/PIER13050603

15. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, 21155-21162, 2011.
doi:10.1364/OE.19.021155

16. Shen, X., Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber, design, experiment and physical interpretation," Appl. Phys. Lett., Vol. 101, 154102, 2012.
doi:10.1063/1.4757879

17. Wang, B.-X., X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, "A novel dual-band terahertz metamaterial absorber for a sensor application," Journal of Applied Physics, Vol. 117, 014504, 2015.
doi:10.1063/1.4905261

18. Tao, H., C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D., Vol. 43, 225102, 2010.
doi:10.1088/0022-3727/43/22/225102

19. Dincer, F., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Design of polarization- and incident angle-independent perfect metamaterial absorber with interference theory," Journal of Electronic Materials, Vol. 43, 3949-3953, 2014.
doi:10.1007/s11664-014-3316-x

20. Soheilifar, M. R., R. A. Sadeghzadeh, and H. Gobadi, "Design and fabrication of a metamaterial absorber in the microwave range," Microwave Opt. Technol. Lett., Vol. 56, 1748-1752, 2014.
doi:10.1002/mop.28437

21. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

22. Lee, H.-M. and H.-S. Lee, "A dual band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

23. Ni, B., X. S. Chen, L. J. Huang, J. Y. Ding, G. H. Li, and W. Lu, "A dual-band polarization insensitive metamaterial absorber with split ring resonator," Opt. Quantum. Elect., Vol. 45, 747-753, 2013.
doi:10.1007/s11082-013-9676-2

24. Tuong, P. V., J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, "Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials," Appl. Phys. Lett., Vol. 102, 081122, 2013.
doi:10.1063/1.4794173

25. Li, M.-H., S-Y. Liu, L.-Y. Guo, H. Lin, H.-Lin Yang, and B.-X. Xiao, "Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber," Optics Communications, Vol. 295, 262-267, 2013.
doi:10.1016/j.optcom.2013.01.030

26. Zhai, H., Z. Li, L. Li, and C. Liang, "A dual-band wide-angle polarization-insensitive ultrathin gigahertz metamaterial absorber," Microwave Opt. Technol. Lett., Vol. 55, 1606-1609, 2013.
doi:10.1002/mop.27622

27. Li, M.-H., H.-L. Yang, H. Lin, and B.-X. Xiao, "Design, measurement, and characterization of dual-band left-handed metamaterials with combined elements," Microwave Opt. Technol. Lett., Vol. 55, 493-497, 2013.

28. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, "Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model," Journal of Applied Physics, Vol. 115, 104503, 2014.
doi:10.1063/1.4868577

29. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber," Appl. Phys. A, Vol. 118, 207-215, 2014.
doi:10.1007/s00339-014-8908-z

30. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization independent triple band metamaterial absorber," AIP Advances, Vol. 4, 097127, 2014.
doi:10.1063/1.4896282

31. Bhattacharyya, S. and K. V. Srivastava, "Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator," Journal of Applied Physics, Vol. 115, 064508, 2014.
doi:10.1063/1.4865273

32. Bhattacharyya, S., S. I. Ghosh, and K. V. Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, 094514, 2013.
doi:10.1063/1.4820569

33. Yoo, Y. J., Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, "Triple-band perfect metamaterial absorption, based on single cut-wire bar," Appl. Phys. Lett., Vol. 106, 071105, 2015.
doi:10.1063/1.4913243

34. Bian, B., S. Liu, S.Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
doi:10.1063/1.4832785

35. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, "An ultrathin quad-band polarization-insensitive wide angle metamaterial absorber," Microwave Opt. Technol. Lett., Vol. 57, 697-702, 2015.
doi:10.1002/mop.28928

36. Bhattacharya, A., S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "An ultrathin penta-band polarization-insensitive compact metamaterial absorber for airborne radar applications," Microwave Opt. Technol. Lett., Vol. 57, 2519-2524, 2015.
doi:10.1002/mop.29365