Vol. 51
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-30
Giant Faraday Rotation in One-Dimensional Photonic Crystal with Magnetic Defect
By
Progress In Electromagnetics Research M, Vol. 51, 131-138, 2016
Abstract
The effect of a substantial increase of the Faraday rotation angle has been investigated in a symmetrical resonator structure, which is represented by a one-dimensional photonic crystal with dielectric Bragg mirrors and a magnetically active layer placed between mirrors. In the numerical analysis, the parameters of a pure yttrium iron garnet at two wavelengths - 1.15 μm and 1.3 μm have been used. The increase in the Faraday rotation angle is caused by not only an increase of the magnetic layer thickness, but also a symmetrical increase in the number of Bragg mirrors periods.
Citation
Svetlana V. Eliseeva, Yuliya F. Nasedkina, and Dmitrij Igorevich Sementsov, "Giant Faraday Rotation in One-Dimensional Photonic Crystal with Magnetic Defect," Progress In Electromagnetics Research M, Vol. 51, 131-138, 2016.
doi:10.2528/PIERM16080403
References

1. Štefan, V., "Optics in magnetic multilayers and nanostructures," CRC, 2006.

2. Lyubchanskii, I. L., N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and T. Rasing, "Magnetic photonic crystals," Journal of Physics D: Applied Physics, 165210, 2003.

3. Figotin, A. and I. Vitebskiy, "Electromagnetic unidirectionality in Electromagnetic unidirectionality in magnetic photonic crystals," Physical Review B, 165210, 2003.
doi:10.1103/PhysRevB.67.165210

4. Shaposhnikov, A. N., A. R. Prokopov, V. N. Berzhansky, T. V. Mikhailova, A. V. Karavainikov, M. F. Kharchenko, V. I. Belotelov, I. M. Lukienko, O. V. Miloslavskaya, and Yu M. Kharchenko, "Magnetooptics of single and microresonator iron-garnet films at low temperatures," Optical Materials, Vol. 52, 21-25, 2016.
doi:10.1016/j.optmat.2015.12.005

5. Berzhansky, V. N., A. V. Karavainikov, T. V. Mikhailova, A. R. Prokopov, A. N. Shaposhnikov, M. F. Kharchenko, I. M. Lukienko, O. V. Miloslavskaya, and Yu M. Kharchenko, "Temperature dependence of faraday rotation in microcavity 1D-MPCS containing magneto-optical layers with a compensation temperature," Solid State Phenomena, Vol. 230, 247-252, Trans. Tech. Publ., 2015.
doi:10.4028/www.scientific.net/SSP.230.247

6. Semuk, E. Yu., V. N. Berzhansky, A. R Prokopov, A. N. Shaposhnikov, A. V. Karavainikov, O. Yu. Salyuk, and V. O. Golub, "Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers," Journal of Magnetism and Magnetic Materials, Vol. 394, 92-95, 2015.
doi:10.1016/j.jmmm.2015.06.047

7. Steel, M. J., M. Levy, and R. M. Osgood, "Photonic bandgaps with defects and Photonic bandgaps with defects and the enhancement of faraday rotation," Journal of Lightwave Technology, Vol. 18, No. 9, 1297, 2000.
doi:10.1109/50.871709

8. Steel, M. J., M. Levy, R. M. Osgood, and Jr., "High transmission enhanced high transmission enhanced faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technology Letters, Vol. 12, No. 9, 1171-1173, 2000.
doi:10.1109/68.874225

9. Inoue, M., K. Arai, T. Fujii, and M. Abe, "Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," Journal of Applied Physics, Vol. 83, 6768-6770, 1998.
doi:10.1063/1.367789

10. Shuvaev, A. M., G. V. Astakhov, A. Pimenov, C. Br¨une, H. Buhmann, and L. W. Molenkamp, "Giant magneto-optical faraday effect in hgte thin Giant magneto-optical faraday effect in hgte thin films in the terahertz spectral range," Physical Review Letters, Vol. 106, No. 10, 107404, 2011.
doi:10.1103/PhysRevLett.106.107404

11. Kahl, S. and A. M. Grishin, "Enhanced faraday rotation in enhanced faraday rotation in all-garnet magneto-optical photonic crystal," Applied Physics Letters, Vol. 84, No. 9, 1438-1440, 2004.
doi:10.1063/1.1651324

12. Kamal, A. and A. Grishin, "Magneto-opto photonic crystal multiplayer structure having enhanced Faraday rotation with visible light,", US Patent 8,102,588, Jan. 24, 2012.

13. Boriskina, J. V., S. G. Erokhin, A. B. Granovsky, A. P. Vinogradov, and M. Inoue, "Enhancement of the magnetorefractive effect in magnetophotonic crystals," Physics of the Solid State, Vol. 48, No. 4, 717-721, 2006.
doi:10.1134/S1063783406040160

14. Erokhin, S. G., A. P. Vinogradov, A. B. Granovsky, and M. Inoue, "Field distribution of a light wave near a magnetic defect in one-dimensional photonic crystals," Physics of the Solid State, Vol. 49, No. 3, 497-499, 2007.
doi:10.1134/S1063783407030195

15. Eliseeva, S. V. and D. I. Sementsov, "Magneto-optical activity of a one-dimensional photonic crystal with a magnetic defect," Physics of the Solid State, Vol. 54, No. 10, 1981-1987, 2012.
doi:10.1134/S1063783412100125

16. Eliseeva, S. V. and D. I. Sementsov, "Optical spectra of one-dimensional optical spectra of one-dimensional defect photonic crystals," Optics and Spectroscopy, Vol. 109, No. 5, 729-737, 2010.
doi:10.1134/S0030400X10110123

17. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Oct. 1999.

18. Weber, M. J., Handbook of Optical Materials, Vol. 19, CRC Press, 2002.
doi:10.1201/9781420050196

19. Randoshkin, V. V. and A. Ya. Chervonenkis, "Applied magnetooptics," Energoatomizdat, 36-55, Moscow, 1990.