Vol. 54
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-22
Investigation of an Electrically Small Half-Loop Antenna Embedded with a Non-Foster Network Using the Characteristic Mode Theory
By
Progress In Electromagnetics Research M, Vol. 54, 183-193, 2017
Abstract
An electrically small half-loop antenna (ESHLA) embedded with Foster elements is analyzed using the characteristic mode (CM) theory. The resonant frequency and radiation characteristics of the ESHLA are mainly determined by the resonant mode (Mode 1). The characteristic currents of resonant mode (Mode 1) and non-resonant mode (higher order mode) prove the parallel resonance of the ESHLA. However, owing to the modal significance (MS) of the resonant mode varying fast with frequency, the proposed ESHLA has a narrow bandwidth. Analysis shows the MS of the resonant mode and the higher order mode are changed by tuning the Foster element, leading to a negative admittance variation slope in accordance with the non-Foster behavior. By replacing the Foster capacitor with the non-Foster network, both the characteristic currents and the MS are changed over a wide bandwidth. As a consequence, the introduced non-Foster network turns Mode 1 from the narrowband resonant mode into a continuous resonant mode with its radiation pattern kept invariant over a wide bandwidth. The proposed ESHLA with its non-Foster network is fabricated and measured. The measured 6-dB return loss bandwidth is about 12.7% (11.45-13 MHz), with its reflection coefficient curve being an envelope of those of Foster elements embedded ESHLA.
Citation
Li Sun, Bao-Hua Sun, and Guanxi Zhang, "Investigation of an Electrically Small Half-Loop Antenna Embedded with a Non-Foster Network Using the Characteristic Mode Theory," Progress In Electromagnetics Research M, Vol. 54, 183-193, 2017.
doi:10.2528/PIERM17010404
References

1. Wei, T. and H. L. Zheng, "An optimised of high-efficiency vehicular loop antenna for NVIS applications," 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1252-1255, May 8-11, 2010.

2. Austin, B. and K. Murray, "The application of characteristic-mode techniques to vehicle-mounted NVIS antennas," IEEE Antennas Propag. Mag., Vol. 40, No. 1, 7-21, Feb. 30, 1998.
doi:10.1109/74.667319

3. Zhou, G. P. and G. S. Smith, "An accurate theoretical model for the thin-wire circular half-loop antenna," IEEE Trans. Antennas Propagat., Vol. 39, No. 8, 1167-1177, Aug. 1991.
doi:10.1109/8.97352

4. Packer, M. J. and P. A. Diez, "Electrically small half-loop antenna analysis by numerical emulation," Proc. 10th IET International Conference on IRST, 2006, 64-68, Jul. 18-21, 2006.

5. Zhou, G. P. and G. S. Smith, "The multiturn half-loop antenna," IEEE Trans. Antennas Propagat., Vol. 42, No. 5, 750-754, May 1994.
doi:10.1109/8.299578

6. Liu, H. T., Y. H. Cheng, and M. Yan, "Electrically small loop antenna standing on compact ground in wireless sensor package," IEEE Antennas Wireless Propag. Lett., Vol. 15, No. 99, 1-1, 2015.

7. Koubeissi, M., B. Pomie, and E. Rochefort, "Perspectives of HF half loop antennas for stealth combat ships," Progress In Electromagnetics Research B, Vol. 54, 167-184, 2013.
doi:10.2528/PIERB13050201

8. Gouin, J. P., D. Lafargue, and H. L. Guen, "HF 125 W half-loop antennas in ALE and ECCM for land mobile, navy and helicopter use," Proc. Eighth International conference on HF Radio Systems and Techniques, 49-52, 2000.

9. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

10. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

11. Ouedraogo, R. O., E. J. Rothwell, A. Diaz, S.-Y. Chen, A. Temme, and K. Fuchi, "In situ optimization of metamaterial-inspired loop antennas," IEEE Antenna Wireless Propag. Lett., Vol. 9, 75-78, 2010.
doi:10.1109/LAWP.2010.2043409

12. Ramanandraibe, E., M. Latrach, W. Abdouni, and A. Sharaiha, "A half-loop antenna associated with one SRR cell," Proc. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1442-1445, 2013.
doi:10.1109/ICEAA.2013.6632488

13. Ramanandraibe, E., M. Latrach, and A. Sharaiha, "Multi-band metamaterial-inspired half-loop antenna," Proc. 2014 International Conference on Multimedia Computing and Systems (ICMCS), 1449-1452, 2014.
doi:10.1109/ICMCS.2014.6911328

14. Mirzaei, H. and G. V. Eleftheriades, "A resonant printed monopole antenna with an embedded non-foster matching network," IEEE Trans. Antennas Propagat., Vol. 61, No. 11, 5363-5371, Nov. 2013.
doi:10.1109/TAP.2013.2276912

15. Barbuto, M., A. Monti, F. Bilotti, and A. Toscano, "Design of a non-foster actively loaded SRR and application in metamaterial-inspired components," IEEE Trans. Antennas Propagat., Vol. 61, No. 3, 1219-1227, Mar. 2013.
doi:10.1109/TAP.2012.2228621

16. Church, J., J.-C. S. Chieh, L. Xu, J. D. Rockway, and D. Arceo, "UHF electrically small box cage loop antenna with an embedded non-foster load," IEEE Antenna Wireless Propag. Lett., Vol. 13, 1329-1332, 2014.
doi:10.1109/LAWP.2014.2337112

17. Fan, Y. F., K. Z. Rajab, M. Munoz, and Y. Hao, "Electrically small half-loop antenna design with non-Foster matching networks," Proc. 6th European Conference on Antennas and Propagation (EUCAP), 126-129, 2011.

18. Albarracín-Vargas, F., E. Ugarte-Muñoz, V. González-Posadas, and D. Segovia-Vargas, "Sensitivity analysis for active matched antennas with non-Foster elements," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6040-6048, Dec. 2014.
doi:10.1109/TAP.2014.2364811

19. Garbacz, R. J. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Trans. Antennas Propagat., Vol. 19, No. 3, 348-358, May 1971.
doi:10.1109/TAP.1971.1139935

20. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999

21. Harrington, R. F. and J. R. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 629-639, Sep. 1971.
doi:10.1109/TAP.1971.1139990

22. Garbacz, R. J. and D. M. Pozar, "Antenna shape synthesis using characteristic modes," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 340-350, May 1982.
doi:10.1109/TAP.1982.1142820

23. Liu, D., R. J. Garbacz, and D. M. Pozar, "Antenna synthesis and optimization using generalized characteristic modes," IEEE Trans. Antennas Propagat., Vol. 38, No. 6, 62-868, Jun. 1990.
doi:10.1109/8.55583

24. Harrington, R. F. and J. R. Mautz, "Control of radar scattering by reactive loading," IEEE Trans. Antennas Propagat., Vol. 20, No. 4, 446-454, Jul. 1972.
doi:10.1109/TAP.1972.1140234

25. Adams, J. J. and J. T. Bernhard, "A modal approach to tuning and bandwidth enhancement of an electrically small antenna," IEEE Trans. Antennas Propagat., Vol. 59, No. 4, 1085-1092, Apr. 2011.
doi:10.1109/TAP.2011.2109683

26. Obeidat, K. A., B. D. Raines, and R. G. Rojas, "Discussion of series and parallel resonance phenomena in the input impedance of antennas," Radio Sci., Vol. 45, No. 6, RS6012, Dec. 2010.
doi:10.1029/2010RS004353

27. Linvill, J., "Transistor negative-impedance converters," Proc. IRE, Vol. 41, No. 6, 725-729, Jun. 1953.
doi:10.1109/JRPROC.1953.274251

28. Jacob, M. M., L. Jiang, and D. F. Sievenpiper, "Non-Foster loaded parasitic array for broadband steerable patterns," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6081-6090, Dec. 2014.
doi:10.1109/TAP.2014.2361903