Vol. 57
Latest Volume
All Volumes
PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-16
Regional and Diurnal Variations of Rain Attenuation Obtained from Measurement of Raindrop Size Distribution Over Indonesia at Ku, Ka and W Bands
By
Progress In Electromagnetics Research M, Vol. 57, 25-34, 2017
Abstract
The measured raindrop size distribution (DSD) and the ITU-R model have been used to elucidate the regional and diurnal variations of rain attenuation in Indonesia, for Ku-band (13.6 GHz), Ka-band (35.6 GHz), and W-band (96 GHz) frequencies. The DSDs were measured by the Parsivel disdrometer at Kototabang (KT; 100.32˚E, 0.20˚S), Padang (PD; 100:21˚E, 0:57˚S), Pontianak (PT; 109:37˚E, 0:00˚S), Manado (MN; 124:92˚E, 1:55˚N) and Biak (BK; 136:10˚E, 1:18˚S). In general, PD, KT and PT have lower rain attenuation than those at MN and BK, for the same rainfall rate, due to lower concentration of small-sized drops at these sites as reported by a previous study. Considerable differences between the attenuation obtained from the DSD and the ITU-R model are observed at all locations, in particular for very heavy rainfall (R > 50 mm/h). For R < 50 mm/h, the specific rain attenuation of measured DSD is in fairly good agreement with that obtained from the ITU-R model. The specific rain attenuation obtained from the DSD shows diurnal variation, in agreement with a previous study at KT. The diurnal variation of rain attenuation is dependent on the frequency and rainfall rate. At KT and PT, the lowest rain attenuation for Ku-band is observed during 06:00-12:00 LT, but during this period the largest attenuation is observed for Ka- and W-bands. These phenomena may be due to the increasing role of small and medium-sized drops by increasing frequency.
Citation
Fadli Nauval, Marzuki Marzuki, and Hiroyuki Hashiguchi, "Regional and Diurnal Variations of Rain Attenuation Obtained from Measurement of Raindrop Size Distribution Over Indonesia at Ku, Ka and W Bands," Progress In Electromagnetics Research M, Vol. 57, 25-34, 2017.
doi:10.2528/PIERM17030503
References

1. Moupfouma, F. and L. Martin, "Modelling of the rainfall rate cumulative distribution for the design of satellite and terrestrial communication systems," Int. J. Satellite Commun., Vol. 13, 105-115, 1995.
doi:10.1002/sat.4600130203

2. Marzuki, H. Hashiguchi, T. Shimomai, and W. L. Randeu, "Cumulative distributions of rainfall rate over Sumatra," Progress In Electromagnetics Research M, Vol. 49, 1-8, 2016.
doi:10.2528/PIERM16043007

3. Manabe, T., T. Ihara, J. Awaka, and Y. Furuhama, "The relationship of raindrop-size distribution to attenuation experiments at 50, 80, 140, and 240 GHz," IEEE Trans. Antennas Propag., Vol. 35, 1326-1330, 1987.
doi:10.1109/TAP.1987.1144005

4. Yeo, T. S., P. S. Kooi, M. S. Leong, and S. S. Ng, "Microwave attenuation due to rainfall at 21.225 GHz in the Singapore environment," Electron. Lett., Vol. 26, No. 14, 1021-1022, 1990.
doi:10.1049/el:19900661

5. Yeo, T. S., P. S. Kooi, and M. S. Leong, "A two-year measurement of rainfall attenuation of CW microwaves in Singapore," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 709-712, 1993.
doi:10.1109/8.250446

6. Zhou, Z. X., L. W. Li, T. S. Yeo, and M. S. Leong, "Analysis of experimental results on microwave propagation in Singapore's tropical rainfall environment," Microwave Opt. Technol. Lett., Vol. 21, No. 6, 470-473, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<470::AID-MOP19>3.0.CO;2-5

7. Obiyemi, O. O., J. S. Ojo, and T. S. Ibiyemi, "Performance analysis of rain rate models for microwave propagation designs over tropical climate," Progress In Electromagnetics Research M, Vol. 39, 115-122, 2014, doi:10.2528/PIERM14083003.
doi:10.2528/PIERM14083003

8. Aldrian, E. and R. D. Susanto, "Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature," Int. J. of Climatology, Vol. 23, No. 12, 1435-1452, 2003.
doi:10.1002/joc.950

9. Marzuki, T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1191-1196, 2009.
doi:10.1109/TAP.2009.2015812

10. Marzuki, H. Hashiguchi, M. K. Yamamoto, S. Mori, and M. D. Yamanaka, "Regional variability of raindrop size distribution over Indonesia," Ann. Geophys., Vol. 31, 1941-1948, 2013, doi:10.5194/angeo-31-1941-2013.
doi:10.5194/angeo-31-1941-2013

11. Fiebig, U.-C. and C. Riva, "Impact of seasonal and diurnal variations on satellite system design in V band," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 923-932, 2004.
doi:10.1109/TAP.2004.825650

12. Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, "Seasonal and diurnal variations of raindrop size distribution in Asian Monsoon Region," J. Meteor. Soc. Japan. Ser. II, Vol. 84A, 195-209, 2006.
doi:10.2151/jmsj.84A.195

13. Radiowave Propagation Series, I.T.U. "Specific attenuation model for rain for use in prediction methods," Recommendation ITU-R P.838-3, International Telecommunications Union, Geneva, 2005.

14. Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, "The global precipitation measurement mission," Bull. Amer. Meteor. Soc., Vol. 95, 701-722, 2014, doi: 10.1175/BAMS-D-13-00164.1.
doi:10.1175/BAMS-D-13-00164.1

15. Illingworth, A. J., H. W. Barker, A. A. Beljaars, M. M. Ceccaldi, H. H. Chepfer, N. N. Clerbaux, J. J. Cole, J. J. Delano, C. C. Domenech, D. P. Donovan, S. S. Fukuda, M. M. Hirakata, R. J. Hogan, A. A. Huenerbein, P. P. Kollias, T. T. Kubota, T. T. Nakajima, T. Y. Nakajima, T. T. Nishizawa, Y. Y. Ohno, H. H. Okamoto, R. R. Oki, K. K. Sato, M. M. Satoh, M. W. Shephard, A. A. Velzquez-Blzquez, U. U. Wandinger, T. T. Wehr, and G. J. van Zadelhoff, "The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation," Bull. Amer. Meteor. Soc., Vol. 96, 1311-1332, 2015, doi: 10.1175/BAMS-D-12-00227.1.
doi:10.1175/BAMS-D-12-00227.1

16. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, Inc, 1983.

17. Mätzler, C., "MATLAB functions for Mie scattering and absorption Version 2," IAP Research Report No. 2002-11, Institut für angewandte Physik, Universität Bern, 2002.

18. Liebe, H. J., G. A. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," Int. J. Infrared and Millimeter Waves, Vol. 12, 659-674, 1991.
doi:10.1007/BF01008897

19. Lee, G. and I. Zawadzki, "Variability of drop size distributions: Noise and noise filtering in disdrometric data," J. Applied Meteorology, Vol. 44, 634-652, 2005.
doi:10.1175/JAM2222.1