Vol. 57
Latest Volume
All Volumes
PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-08
Novel Design Theory for High-Efficiency and High-Linearity Microwave Power Amplifier Based on 2nd Harmonic: Enhanced Class-j
By
Progress In Electromagnetics Research M, Vol. 57, 103-111, 2017
Abstract
In this paper, after a brief review of the previous nonlinear power amplifier (PA) classes including Class-B, Class-F, and Class-J, a novel design theory for high-efficiency and high-linearity microwave power amplifier based on 2nd harmonic component of the drain voltage and current signals is proposed. The new scheme introduces a new nonlinear class which like Class-J tunes only two primary harmonic components but unlike Class-J, the drain voltage is boosted to the maximum four times dc drain voltage. A quasi half sinusoidal waveform for the current and a quadratic sinusoidal waveform for the voltage are thus realized in this class, leading to a minimum waveform overlapping. The new class theoretically provides 93% power efficiency. It is, in fact, an enhanced Class-J with higher power efficiency and better linearity performance.
Citation
Seyed Alireza Mohadeskasaei, Fuhong Lin, Xianwei Zhou, and Sani U. Abdullah, "Novel Design Theory for High-Efficiency and High-Linearity Microwave Power Amplifier Based on 2nd Harmonic: Enhanced Class-j ," Progress In Electromagnetics Research M, Vol. 57, 103-111, 2017.
doi:10.2528/PIERM17033104
References

1. Cripps, S. C., P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 665-667, Oct. 2009.
doi:10.1109/LMWC.2009.2029754

2. Seyed Alireza Mohadeskasaei, S. U. A., J. An, Y. Chen, Z. Li, and T. Sun, "Systematic approach for design of broadband, high efficiency, high power RF amplifiers," ETRI Journal, Vol. 39, No. 1, 51-61, Feb. 2017.
doi:10.4218/etrij.17.0116.0440

3. Zhao, D. and P. Reynaert, "A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 48, No. 10, 2323-2337, Oct. 2013.
doi:10.1109/JSSC.2013.2275662

4. Chen, K. and D. Peroulis, "Design of highly efficient broadband Class-E power amplifier using synthesized low-pass matching networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3162-3173, Dec. 2011.
doi:10.1109/TMTT.2011.2169080

5. Grebennikov, A., "High-efficiency class-E power amplifier with shunt capacitance and shunt filter," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 63, No. 1, 12-22, Jan. 2016.
doi:10.1109/TCSI.2015.2512698

6. Kim, J. H., G. D. Jo, J. H. Oh, Y. H. Kim, K. C. Lee, and J. H. Jung, "Modeling and design methodology of high-efficiency Class-F and Class-F-1 power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 1, 153-165, Jan. 2011.
doi:10.1109/TMTT.2010.2090167

7. Hayati, M., A. Sheikhi, and A. Grebennikov, "Class-F power amplifier with high power added efficiency using bowtie-shaped harmonic control circuit," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 2, 133-135, Feb. 2015.
doi:10.1109/LMWC.2014.2382649

8. Moon, J., J. Kim, and B. Kim, "Investigation of a Class-J power amplifier with a nonlinear Cout for optimized operation," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 11, 2800-2811, Nov. 2010.
doi:10.1109/TMTT.2010.2077970

9. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency Class-J in a linear and broadband PA," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3196-3204, Dec. 2009.
doi:10.1109/TMTT.2009.2033295

10. Park, S., J. L. Woo, U. Kim, and Y. Kwon, "Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 4, 1174-1185, Apr. 2015.
doi:10.1109/TMTT.2015.2409175

11. Mohadeskasaei, S. A., F. Lin, X. Zhou, S. U. Abdullahi, and A. Ahmat, "Design of broadband, high-efficiency, and high-linearity GaN HEMT Class-J RF power amplifier," Progress In Electromagnetics Research C, Vol. 72, 177-186, 2017.
doi:10.2528/PIERC17011905

12. Jin, H., Q. Li, L. Zhang, X. Zeng, and R. Yang, "Review of wide band-gap semiconductors technology," MATEC Web of Conferences, Vol. 40, 2016.

13. Cripps, S. C., RF Power Amplifiers for Wireless Communications, Artech House, 1999.

14. Raab, F. H., "Class-F power amplifiers with maximally flat waveforms," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 11, 2007-2012, 1997.
doi:10.1109/22.644215

15. Rudiakova, A. and V. Krizhanovski, Advanced Design Techniques for RF Power Amplifiers, Springer, 2006.

16. Colantonio, P., F. Giannini, and E. Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers, John Wiley and Sons, 2009.
doi:10.1002/9780470746547