Vol. 60
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-18
Study on Operating Status of Overhead Transmission Lines Based on Wind Speed Variation
By
Progress In Electromagnetics Research M, Vol. 60, 111-120, 2017
Abstract
In the spatial dimension, the variation of the wind speed along the overhead transmission line makes the conductor temperature and line parameter show a nonuniform distribution characteristic, which has an important influence on the operating status of the system. In order to describe the actual situation more accurately, a line cutting model based on the wind speed variation along the line is proposed. This paper proves the application value of the model by using a typical 4-bus system. From the two aspects of the power flow and the maximum power transmission capacity, we contrast the line cutting model with the traditional models, indicating that the cutting model is closer to the actual situation of the system.
Citation
Yang Mo, Xiaofeng Zhou, Yanling Wang, and Likai Liang, "Study on Operating Status of Overhead Transmission Lines Based on Wind Speed Variation," Progress In Electromagnetics Research M, Vol. 60, 111-120, 2017.
doi:10.2528/PIERM17072605
References

1. Douglass, D. A., "Weather-dependent versus static thermal line ratings," IEEE Transactions on Power Delivery, Vol. 3, No. 2, 742-753, 1998.
doi:10.1109/61.4313

2. Heckenbergerova, J., P. Musilek, and K. Filimonenkov, "Assessment of seasonal static thermal ratings of overhead transmission conductors," 2011 IEEE Power and Energy Society General Meeting, 1-8, 2011.

3. Douglass, D. A. and A. Edris, "Real-time monitoring and dynamic thermal rating of power transmission circuits," IEEE Transactions on Power Delivery, Vol. 11, No. 3, 1407-1418, 1996.
doi:10.1109/61.517499

4. Fu, J., D. J. Morrow, S. Abdelkader, and B. Fox, "Impact of dynamic line rating on power systems," UPEC 2011 46th International Universities’ Power Engineering Conference, 1-5, 2011.

5. Xie, Z. H., "Calculation and analysis of wind speed in design of overhead transmission line in mountain area," Sichuan Electric Power Technology, Vol. 38, No. 3, 30-32, 2015.

6. Li, T. W., J. H. Zhao, Y. F. Cai, B. Luo, and L. Liu, "Analysis on design wind speed of transmission lines for coastal region of china southern power grid," Southern Power System Technology, Vol. 9, No. 6, 49-53, 2015.

7. Rahman, M., M. Kiesau, and V. Cecchi, "Investigating the impacts of conductor temperature on power handling capabilities of transmission lines using a multi-segment line model," SoutheastCon 2017, 1-7, 2017.

8. Zhang, H., X. S. Han, and Y. L. Wang, "Analysis on current carrying capacity of overhead lines being operated," Power System Technology, Vol. 32, No. 14, 31-35, 2008.

9. Seppa, T. O., "Guide for selection of weather parameters for bare overhead conductor ratings," CIGRE Technical Brochure, 299, 2006.

10. Cecchi, V., A. S. Leger, K. Miu, and C. O. Nwankpa, "Incorporating temperature variations into transmission-line models," IEEE Transactions on Power Delivery, Vol. 26, No. 4, 2189-2196, 2011.
doi:10.1109/TPWRD.2011.2159520

11. Cecchi, V., K. Miu, A. S. Leger, and C. Nwankpa, "Study of the impacts of ambient temperature variations along a transmission line using temperature-dependent line models," Power and Energy Society General Meeting, 1-7, 2011.

12. Grainger, J. J., W. D. Stevenson, and Jr., Power System Analysis, McGraw-Hill College, 1994.

13. Cecchi, V., M. Knudson, and K. Miu, "System impacts of temperature-dependent transmission line models," IEEE Transactions on Power Delivery, Vol. 28, No. 4, 2300-2308, 2013.
doi:10.1109/TPWRD.2013.2276757

14. Zhang, Q. P. and Z. Y. Qian, "Study on real-time dynamic capacity-increase of transmission line," Power System Technology, Vol. 29, No. 19, 18-21, 2005.