Vol. 62
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-11
Transmission Line Model Considering Nonuniform Temperature Distribution at Different Locations
By
Progress In Electromagnetics Research M, Vol. 62, 99-109, 2017
Abstract
The temperature variation throughout overhead transmission lines has an important effect on the line operation. In order to describe the actual operation of transmission lines more accurately, this paper proposes a line segmentation method based on temperature distribution at different locations. Taking the actual transmission line of Shaanxi Province as a test case, the influence of the different temperature calculation methods on the maximum transmission power of lines is studied under the lumped parameter model and the distributed parameter model, respectively. It is shown that transmission line model considering non-uniform temperature distribution at different locations is more accurate for studying the operating state of the system.
Citation
Yanling Wang, Yang Mo, Likai Liang, Wei Wang, Xiaofeng Zhou, and Ran Wei, "Transmission Line Model Considering Nonuniform Temperature Distribution at Different Locations," Progress In Electromagnetics Research M, Vol. 62, 99-109, 2017.
doi:10.2528/PIERM17091201
References

1. Heckenbergerova, J., P. Musilek, and K. Filimonenkov, "Assessment of seasonal static thermal ratings of overhead transmission conductors," IEEE Power and Energy Society General Meeting, 1-8, 2011.

2. Beers, G. M., S. R. Gilligan, H. W. Lis, and J. M. Schamberger, "Transmission conductor ratings," IEEE Transactions on Power Apparatus and Systems, Vol. 82, No. 68, 767-775, 1963.
doi:10.1109/TPAS.1963.291406

3. Fu, J., D. J. Morrow, S. Abdelkader, and B. Fox, "Impact of dynamic line rating on power systems," 46th International Universities’ Power Engineering Conference, 1-5, 2011.

4. Greenwood, D. M. and P. C. Taylor, "Investigating the impact of real-time thermal ratings on power network reliability," IEEE Transactions on Power Systems, Vol. 29, No. 5, 2460-2468, 2014.
doi:10.1109/TPWRS.2014.2305872

5. Barry, R. G. and R. J. Chorley, Atmosphere, Weather and Climate, 8th Ed., Routledge, New York, 2003.

6. Wydra, M. and P. Kacejko, "Power system state estimation using wire temperature measurements for model accuracy enhancement," IEEE PES Innovative Smart Grid Technologies Conference Europe, 1-6, 2016.

7. Wilson, G. L. and K. A. Schmidt, "Transmission line models for switching studies: Design criteria II. Selection of section length, model design and tests," IEEE Transaction on Power Apparatus and Systems, Vol. 93, No. 1, 389-395, 1974.
doi:10.1109/TPAS.1974.293959

8. Cecchi, V., A. S. Leger, K. Miu, and C. O. Nwankpa, "Modeling approach for transmission lines in the presence of non-fundamental frequencies," IEEE Transaction on Power Delivery, Vol. 24, No. 4, 2328-2335, 2009.
doi:10.1109/TPWRD.2008.2002876

9. Cecchi, V., A. S. Leger, K. Miu, and C. O. Nwankpa, "Incorporating temperature variations into transmission-line models," IEEE Transactions on Power Delivery, Vol. 26, No. 4, 2189-2196, 2011.
doi:10.1109/TPWRD.2011.2159520

10. Rahman, M., M. Kiesau, and V. Cecchi, "Investigating the impacts of conductor temperature on power handling capabilities of transmission lines using a multi-segment line model," SoutheastCon 2017, 1-7, 2017.

11. Tang, Y., H. Chen, H. Wang, F. Dai, and S. Jiang, "Transmission line models used in travelling wave studies," Transmission and Distribution Conference, 797-803, 1999.

12. Bockarjova, M. and G. Andersson, "Transmission line conductor temperature impact on state estimation accuracy," IEEE Lausanne Power Tech., 701-706, 2007.
doi:10.1109/PCT.2007.4538401

13. Wydra, M. and P. Kacejko, "Power system state estimation accuracy enhancement using temperature measurements of overhead line conductors," PES Innovative Smart Grid Technologies Conference Europe, 183-192, 2016.