Vol. 62
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-29
A New Planar Electromagnetic Levitation System Improvement Method Based on SIMLAB Platform in Real Time Operation
By
Progress In Electromagnetics Research M, Vol. 62, 211-221, 2017
Abstract
Electromagnetic levitation system is commonly used in the field of magnetic levitation system train. Magnetic levitation technology is one of the most promised issue of transportation and precision engineering. Magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. In this paper, a new prototype of the magnetic levitation system is proposed, designed and successfully tested via SIMLAB platform in real time. In addition, the proposed system was implemented with an efficient controller, which is linear-quadratic regulator (LQR) and compared with a classical controller which is proportional-integral-derivative (PID). The present system has been tested with two different criteria: signal test and load test under different input signals which are Sine wave and Squar wave. The findings prove that the suggested levitation system reveals a better performance than conventional one. Moreover, the LQR controller produced a great stability and optimal response compared to PID controller used at same system parameters.
Citation
Mundher H. A. Yaseen, and Haider J. Abd, "A New Planar Electromagnetic Levitation System Improvement Method Based on SIMLAB Platform in Real Time Operation," Progress In Electromagnetics Research M, Vol. 62, 211-221, 2017.
doi:10.2528/PIERM17091304
References

1. Ono, M., S. Koga, and H. Ohtsuki, "Japan’s superconducting Maglev train," IEEE Instrum. Meas. Mag., Vol. 5, No. 1, 9-15, 2002.
doi:10.1109/5289.988732

2. Chen, M.-Y., M.-J. Wang, and L.-C. Fu, "A novel dual-axis repulsive maglev guiding system with permanent magnet: Modeling and controller design," IEEE/ASME Trans. Mechatron., Vol. 8, No. 1, 77-86, 2003.
doi:10.1109/TMECH.2003.809158

3. De Boeij, J., M. Steinbuch, and H. Gutierrez, "Real-time control of the 3-DOFsled dynamics of a null-flux Maglev system with a passive sled," IEEE Trans. Magn., Vol. 42, No. 5, 1604-1610, 2006.
doi:10.1109/TMAG.2006.870026

4. Rote, D. and Y. Cai, "Review of dynamic stability of repulsive-force maglev suspension systems," IEEE Trans. Magn., Vol. 38, No. 2, 1383-1390, 2002.
doi:10.1109/20.996030

5. Banerjee, S., D. Prasad, and J. Pal, "Design, implementation, and testing of a single axis levitation system for the suspension of a platform," ISA Trans., Vol. 46, No. 2, 239-246, 2007.
doi:10.1016/j.isatra.2006.09.001

6. Lee, Y., J. Yang, and S. Shim, "A new model of magnetic force in magnetic levitation systems," J. Electr. Eng., Vol. 3, No. 4, 584-592, 2008.
doi:10.5370/JEET.2008.3.4.584

7. Khemissi, Y., "Control using sliding mode of the magnetic suspension system," International Journal of Electrical & Computer Sciences, No. 3, 1-5, 2010.

8. Liu, C. and J. Zhang, "Design of second-order sliding mode controller for electromagnetic levitation grip used in CNC," Proc. 2012 24th Chinese Control Decis. Conf. CCDC 2012, Vol. 2, No. 1, 3282-3285, 2012.

9. Xing, F., B. Kou, C. Zhang, Y. Zhou, and L. Zhang, "Levitation force control of maglev permanent synchronous planar motor based on multivariable feedback linearization method," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 1318-1321, 2014.
doi:10.1109/ICEMS.2014.7013676

10. Zhu, H., T. J. Teo, and C. K. Pang, "Design and modeling of a six-degree-of-freedom magnetically levitated positioner using square coils and 1-D Halbach arrays," IEEE Trans. Ind. Electron., Vol. 64, No. 1, 440-450, 2017.
doi:10.1109/TIE.2016.2598811

11. Vinodh Kumar, E. and J. Jerome, "LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system," Procedia Eng., Vol. 64, 254-264, 2013.
doi:10.1016/j.proeng.2013.09.097

12. Hussein, B., N. Sulaiman, R. Raja Ahmad, M. Marhaban, and H. Ali, "H_infinity controller design to control the single axis magnetic levitation system with parametric uncertainty," J. Appl. Sci., Vol. 11, No. 1, 66-75, 2011.
doi:10.3923/jas.2011.66.75

13. Cho, J. and Y. Kim, "Design of levitation controller with optimal fuzzy PID controller for magnetic levitation system," J. Korean Inst. Intell. Syst., Vol. 24, No. 3, 279-284, 2014.
doi:10.5391/JKIIS.2014.24.3.279

14. Zhang, Y., Z. Zheng, J. Zhang, and L. Yin, "Research on PID controller in active magnetic levitation based on particle swarm optimization algorithm," Open Automation & Control Systems Journal, Vol. 7, No. 1, 1870-1874, 2015.
doi:10.2174/1874444301507011870

15. Uroš, S., A. Sarjaš, A. Chowdhury, and R. Svečko, "Improved adaptive fuzzy back stepping control of a magnetic levitation system based on symbiotic organism search," Applied Soft Computing, Vol. 56, 19-33, 2017.

16. Hong, D.-K., B.-C.Woo, D.-H. Koo, and K.-C. Lee, "Electromagnet weight reduction in a magnetic levitation system for contactless delivery applications," Sensors, Vol. 10, 6718-6729, 2010.
doi:10.3390/s100706718

17. Li, J.-H. and J.-S. Chiou, "Digital control analysis and design of a field-sensed magnetic suspension system," Sensors, Vol. 15, 6174-6195, 2015.
doi:10.3390/s150306174

18. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley, MA, 1983.

19. Smaili, A. and F. Mrad, Applied Mechatronics, Oxford, MA, 2008.

20. Unni, A. C., A. S. Junghare, V. Mohan, W. Ongsakul, and E. Fos, "PID, fuzzy and LQR controllers for magnetic levitation system,", September 14-16, 2016.