Vol. 65
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-24
Time-Domain Travelling-Wave Model for Quantum Dot Based Vertical Cavity Laser Devices
By
Progress In Electromagnetics Research M, Vol. 65, 29-42, 2018
Abstract
A self-consistent time-domain travelling-wave model for the simulation of self-assembled quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) is developed. The 1-D time-domain travelling-wave model takes into consideration of time-varying QD optical susceptibility, refractive index variation resulting from intersubband free-carrier absorption, homogeneous and inhomogeneous broadening, and QD spontaneous emission noise source. Carrier concentration rate equations are considered simultaneously with the travelling wave model. Effects of temperature on optical susceptibility and carrier density in the active region are taken into account. The model is used to analyze the characteristics of 1.3-μm oxide-confined QD InAs-GaAs VCSEL. The field distribution resulting from time-domain travelling-wave equations, in both the active region and distributed Bragg reflectors, is obtained and used in finding the device characteristics including light-current static characteristics considering the thermal effect. Furthermore, the dynamic characteristics and modulation frequency response are obtained in terms of inhomogeneous broadening.
Citation
Ahmed E. Abouelez, Essam Eldiwany, Mohamed Bakry El Mashade, and Hussien A. Konber, "Time-Domain Travelling-Wave Model for Quantum Dot Based Vertical Cavity Laser Devices," Progress In Electromagnetics Research M, Vol. 65, 29-42, 2018.
doi:10.2528/PIERM17112103
References

1. Larsson, A., "Advances in VCSELs for communication and sensing," IEEE J. Sel. Topics Quantum Electron., Vol. 17, No. 6, 1552-1567, 2011.
doi:10.1109/JSTQE.2011.2119469

2. Towe, E., R. F. Leheny, and A. Yang, "A historical perspective of the development of the vertical-cavity surface-emitting laser," IEEE J. Sel. Topics Quantum Electron., Vol. 6, No. 6, 1458-1464, 2000.
doi:10.1109/2944.902201

3. Mukai, K., Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3 μm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots," IEEE J. Quantum Electron., Vol. 36, 472-478, Apr. 2000.
doi:10.1109/3.831025

4. Zope, U., E. P. Samuel, M. P. Bhole, and D. S. Patil, "Optical field distribution in ZnO/MgZnO quantum dot nanostructure at 375-nm wavelength," Physica E, Vol. 42, 38-42, 2009.
doi:10.1016/j.physe.2009.08.012

5. Ustinov, V. M., Quantum Dot Lasers, Oxford Univ. Press, Oxford, 2007.

6. Ding, Y., W. J. Fan, D. W. Xu, L. J. Zhao, Y. Liu, and N. H. Zhu, "Fabrication and characterization of 1.3-μm InAs quantum-dot VCSELs and monolithic VCSEL arrays," Proc. SPIE-OSA-IEEE, Vol. 7631, 763102-1-763102-7, 2010.

7. Yu, H. C., J. S. Wang, Y. K. Su, S. J. Chang, F. I. Lai, Y. H. Chang, H. C. Kuo, C. P. Sung, H. P. D. Yang, K. F. Lin, J. M. Wang, J. Y. Chi, R. S. Hsiao, and S. Mikhrin, "1.3 μm InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE," IEEE Photonics Technology Letters, Vol. 18, No. 2, 418-420, 2006.
doi:10.1109/LPT.2005.863166

8. Tong, C. Z., D. W. Xu, S. F. Yoon, Y. Ding, and W. J. Fan, "Temperature characteristics of 1.3-μm p-doped InAs-GaAs quantum-dot vertical cavity surface-emitting lasers," IEEE J. Sel. Topics Quantum Electron., Vol. 15, No. 3, 743-748, 2009.
doi:10.1109/JSTQE.2008.2010235

9. Xu, D. W., S. F. Yoon, and C. Z. Tong, "Self-consistent analysis of confinement and output power in 1.3 μm InAs-GaAs quantum-dot VCSELs," IEEE J. Quantum Electron., Vol. 44, No. 9, 879-885, 2008.
doi:10.1109/JQE.2008.925136

10. Abbaspour, H., V. Ahmadi, and M. H. Yavari, "Analysis of QD VCSEL dynamic characteristics considering homogeneous and inhomogeneous broadening," IEEE J. Sel. Topics Quantum Electron., Vol. 17, No. 5, 1327-1333, 2011.
doi:10.1109/JSTQE.2011.2107570

11. Kim, J. E., E. Malić, M. Richter, A. Wilms, and A. Knorr, "Maxwell-Bloch equation approach for describing the microscopic dynamics of quantum-dot surface-emitting structures," IEEE J. Quantum Electron., Vol. 46, No. 7, 1115-1126, 2010.
doi:10.1109/JQE.2010.2043923

12. Piskorski, L., M. Wasiak, R. Sarzala, and W. Nakwaski, "Structure optimisation of modern GaAs-based InGaAs/GaAs quantum-dot VCSELs for optical fibre communication," Opto-Electronics Review, Vol. 17, No. 3, 217-224, 2009.
doi:10.2478/s11772-008-0067-3

13. Yu, S. F., "Dynamic behavior of vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 32, No. 7, 1168-1179, 1996.
doi:10.1109/3.517017

14. Rossetti, M., P. Bardella, and I. Montrosset, "Time-domain travelling-wave model for quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 139-150, 2011.
doi:10.1109/JQE.2010.2055550

15. Gioannini, M. and M. Rossetti, "Time-domain traveling wave model of quantum dot DFB lasers," IEEE J. Sel. Topics Quantum Electron., Vol. 17, No. 5, 1318-1326, 2011.
doi:10.1109/JSTQE.2011.2128857

16. Michalzik, R., "Simple understanding of waveguiding in oxidized VCSELs," Annu. Rep. 1, 19-23, Dept. Optoelectron., Univ. Ulm, Ulm, Germany, 1995.

17. Sugawara, M., Self-assembled InGaAs/GaAs Quantum Dots: Semiconductors and Semimetals, Vol. 60, Academic Press, San Diego, CA, 1999.

18. Banihashemi, M. and V. Ahmadi, "Dynamic characteristics of photonic crystal quantum dot lasers," Applied Optics, Vol. 53, No. 12, 2595, 2014.
doi:10.1364/AO.53.002595

19. Tansu, N. and L. J. Mawst, "Current injection efficiency of InGaAsN quantum-well lasers," Journal of Applied Physics, Vol. 97, No. 5, 054502, 2005.
doi:10.1063/1.1852697

20. Kim, J., C. Meuer, D. Bimberg, and G. Eisenstein, "Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 11, 1670-1680, 2010.
doi:10.1109/JQE.2010.2058793

21. Tong, C., S. Yoon, C. Ngo, C. Liu, and W. Loke, "Rate equations for 1.3-μm dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers," IEEE Journal of Quantum Electronics, Vol. 42, No. 11, 1175-1183, 2006.
doi:10.1109/JQE.2006.883471

22. Li, X., "Distributed feedback lasers: Quasi-3D static and dynamic model," Optoelectronic Devices. Advanced Simulation and Analysis, 87-119, J. Piprek (ed.), Springer, Berlin, 2005.

23. Mulet, J. and S. Balle, "Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 41, No. 9, 1148-1156, 2005.
doi:10.1109/JQE.2005.853355

24. Yu, S. F., Analysis and Design of Vertical Cavity Surface Emitting Lasers, John Wiley & Sons, 2003.
doi:10.1002/0471723789

25. Agrawal, G. P. and N. K. Dutta, Semiconductor Lasers, 2nd Ed., Van Nostrand, New York, 1993.

26. Yu, S. F., "An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 34, No. 10, 1938-1948, 1998.
doi:10.1109/3.720230

27. Xu, T., M. Rossetti, P. Bardella, and I. Montrosset, "Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 48, No. 9, 1193-1202, 2012.
doi:10.1109/JQE.2012.2206372

28. Berg, T. W. and J. Mørk, "Quantum dot amplifiers with high output power and low noise," Applied Physics Letters, Vol. 82, No. 18, 3083-3085, 2003.
doi:10.1063/1.1571226

29. Zhao, Y.-G. and J. Mcinerney, "Transient temperature response of vertical-cavity surface-emitting semiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 31, No. 9, 1668-1673, 1995.
doi:10.1109/3.406381

30. Li, W., X. Li, and W.-P. Huang, "A traveling-wave model of laser diodes with consideration for thermal effects," Optical and Quantum Electronics, Vol. 36, No. 8, 709-724, 2004.
doi:10.1023/B:OQEL.0000039613.03840.64

31. Nakwaski, W. and M. Osinski, "Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays," Electronics Letters, Vol. 28, No. 6, 572-574, 1992.
doi:10.1049/el:19920361