Vol. 69
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-12
GSVD-Based Optimal Filtering with Analog Circuits Preprocessing for Interference Suppression in ELF Communication
By
Progress In Electromagnetics Research M, Vol. 69, 87-96, 2018
Abstract
In order to effectively improve the communication quality in the extremely-low frequency (ELF) communication, an integrated model of the analog circuit combined with the multi-channel array algorithm is constructed, and a highly sensitive magnetic sensor is designed. An array algorithm based on generalized singular value decomposition is proposed to find the optimal filter coefficient, and then to achieve the purpose of suppressing interference in ELF communication. In the manufacture of magnetic antenna, the method of partitioned windings divided by acrylic effectively reduces the distributed capacitance of the magnetic antenna, and the rational design of the amplification filter circuit lays the foundation for the interference suppression in the next step. Specific process of the proposed algorithm is deduced. The corresponding evaluation indices are given, and the correlation among evaluation indice is expounded. The simulated and experimental results are discussed respectively. The experimental setups are designed and presented. The results show that no matter which the simulated signal or the experimental data is, the proposed algorithm can effectively suppress the interference, and the output signal to interference ratio is increased by 30 dB.
Citation
Chun-Teng Li, Yu-Zhong Jiang, Fang-Jun Liu, and Ting-Ting Jiang, "GSVD-Based Optimal Filtering with Analog Circuits Preprocessing for Interference Suppression in ELF Communication," Progress In Electromagnetics Research M, Vol. 69, 87-96, 2018.
doi:10.2528/PIERM18032304
References

1. Ying, W., Y. Jiang, Y. Liu, et al. "A blind detector for Rayleigh flat-fading channels with non-Gaussian interference via the particle learning algorithm," AEU — International Journal of Electronics and Communications, Vol. 67, No. 12, 1068-1071, Dec. 2013.
doi:10.1016/j.aeue.2013.06.009

2. Lukoschus, D. G., "Optimization theory for induction-coil magnetometers at high frequencies," IEEE Trans. Geosci. Electron., Vol. 17, No. 3, 56-63, Jul. 1979.
doi:10.1109/TGE.1979.294613

3. Grosz and E. Paperno, "Analytical optimization of low-frequency search coil magnetometers," IEEE Sensors J., Vol. 12, No. 8, 2719-2723, Aug. 2012.
doi:10.1109/JSEN.2012.2202179

4. Shang, X.-L., L. Wang, and J. Lin, "Low noise wideband inductive magnetic sensor," Journal of Central South University (Science and Technology), Vol. 46, No. 9, 3295-3301, Sep. 2015.

5. Zhu, W., Q. Di, and L. Liu, "Development of search coil magnetometer based on magnetic flux negative feedback structure," Chinese J. Geophys., Vol. 56, No. 11, 3683-3689, Nov. 2013.

6. Ahmed, M. and L.-N. Tho, "Channel estimation and self-interference cancelation in full-duplex communication systems," IEEE Transcations on Vehicular Technology, Vol. 66, No. 1, 321-334, Jan. 2017.
doi:10.1109/TVT.2016.2540538

7. Zhao, Y., T.Wang, C. Ren, et al. "Research on empirical mode decomposition of signals submerged in a heavy noise," Journal of Vibration and Shock, Vol. 28, No. 3, 149-151, Mar. 2009.

8. Niu, J. P., T. Su, X. H. He, et al. "Weak NQR signal detection based on generalized matched filter," Procedia Engineering, Vol. 7, 377-382, Aug. 2009.

9. Van Veen, B. and K. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag., Vol. 5, No. 2, 4-24, Apr. 1988.
doi:10.1109/53.665

10. Gannot, S., E. Vincent, S.Markovich-Golan, et al. "A consolidated perspective on multimicrophone speech enhancement and source separation," IEEE/ACM Trans. on Audio, Speech, and Language Processing, Vol. 25, No. 4, 4-24, Apr. 2017.
doi:10.1109/TASLP.2016.2647702

11. Souden, M., J. Benesty, and S. Affes, "A study of the LCMV and MVDR noise reduction filters," IEEE Trans. on Signal Processing, Vol. 58, No. 9, 4925-4935, Sep. 2010.
doi:10.1109/TSP.2010.2051803

12. Doclo, S., E. De Clippel, and M. Moonen, "Combined acoustic echo and noise reduction using GSVD-based optimal filtering," Proc. IEEE Int. Conf. Acoust. Speech Signal Processing (ICASSP 2000), Vol. 2, 1061-1064, 2000.