Vol. 69
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-15
A Compact Coupling Structure for Diplexers and Filtering Power Dividers
By
Progress In Electromagnetics Research M, Vol. 69, 161-170, 2018
Abstract
This paper presents a compact and novel coupling structure for diplexers and power dividers based exclusively on coupled resonators. It consists of two cross-coupled structures joined together by two common resonators with a cluster of only four resonators. For a diplexer, it represents one of the most compact topologies that produces two 2nd-order channel filters with two fully controllable transmission zeros. This can be used to increase the rejection and isolations between channels without increasing the number of resonators. The same topology can also be used to realise a 3rd-order filtering power divider (FPD), with its embedded cascade trisection (CT) structure generating an asymmetric transmission zero. The coupling matrices of several diplexers and power dividers have been synthesized. Two microstrip diplexers with different positions of the transmission zeros have been demonstrated to verify the device concept. A 1.8 GHz FPD with a fractional bandwidth of 5% has also been prototyped, showing an improved out-of-band rejection from 15 dB to 25 dB below 1.71 GHz. The isolation performance of the divider has been investigated and improved from 7 dB to 18 dB across the band by adding only one resistor.
Citation
Yun Wu, Ruiheng Wu, and Yi Wang, "A Compact Coupling Structure for Diplexers and Filtering Power Dividers," Progress In Electromagnetics Research M, Vol. 69, 161-170, 2018.
doi:10.2528/PIERM18041403
References

1. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949

2. Cameron, R. J. and M. Yu, "Design of manifold-coupled multiplexers," IEEE Microw. Mag., Vol. 8, 46-59, 2007.
doi:10.1109/MMM.2007.904715

3. Wang, Y. and M. J. Lancaster, "An investigation on the coupling characteristics of a novel multiplexer configuration," Eur. Microw. Conf., 900-903, 2013.

4. Shang, X. B., Y. Wang, W. Xia, et al. "Novel multiplexer topologies based on all-resonator structures," IEEE Trans. Microw. Theory Tech., Vol. 61, 3838-3845, 2013.
doi:10.1109/TMTT.2013.2284496

5. Macchiarella, G. and S. Tamiazzo, "Synthesis of star-junction multiplexers," IEEE Trans. Microw. Theory Tech., Vol. 58, 3732-3741, 2010.

6. Chuang, M. L. and M.-T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949

7. Wang, X., J.Wang, and G. Zhang, "Design of wideband filtering power divider with high selectivity and good isolation," Electron. Lett., Vol. 52, 1389-1391, 2016.
doi:10.1049/el.2016.2065

8. Shao, J. Y., S. C. Huang, and Y. H. Pang, "Wilkinson power divider incorporating quasi-elliptic filters for improved out-of-band rejection," Electron. Lett., Vol. 47, 1288-1289, 2011.
doi:10.1049/el.2011.2766

9. Chen, C. F., T. Y. Huang, T. M. Shen, et al. "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Trans. Compon. Packag. Technol., Vol. 3, 1663-1672, 2013.
doi:10.1109/TCPMT.2013.2254488

10. Li, Q., Y. Zhang, and Y. Fan, "Dual-band in-phase filtering power dividers integrated with stubloaded resonators," IET Microw. Anten. Propag., Vol. 9, 695-699, 2015.
doi:10.1049/iet-map.2014.0487

11. Li, Y. C., Q. Xue, and X. Y. Zhang, "Single- and dual-band power dividers integrated with bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 61, 69-76, 2013.
doi:10.1109/TMTT.2012.2226600

12. Avrillon, S., I. Pele, A. Chousseaud, et al. "Dual-band power divider based on semiloop steppedimpedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 51, 1269-1273, 2003.
doi:10.1109/TMTT.2003.809667

13. Uchida, H., N. Yoneda, Y. Konishi, et al. "Bandpass directional couplers with electromagneticallycoupled resonators," 2006 IEEE MTT-S Int. Microw. Symp. Digest, 1563-1566, 2006.
doi:10.1109/MWSYM.2006.249613

14. Scardelletti, M. C., G. E. Ponchak, and T. M. Weller, "Miniaturized Wilkinson power dividers utilizing capacitive loading," IEEE Microw. Wireless Compon. Lett., Vol. 12, 6-8, 2002.
doi:10.1109/7260.975717

15. Mirzavand, R., M. M. Honari, A. Abdipour, et al. "Compact microstrip wilkinson power dividers with harmonic suppression and arbitrary power division ratios," IEEE Trans. Microw. Theory Tech., Vol. 61, 61-68, 2013.
doi:10.1109/TMTT.2012.2226054

16. Miao, C., J. Yang, G. Tian, X. Zheng, et al. "Novel sub-miniaturized wilkinson power divider based on small phase delay," IEEE Microw. Wireless Compon. Lett., Vol. 24, 662-664, 2014.
doi:10.1109/LMWC.2014.2340580

17. Yu, X. and S. Sun, "Synthesis of filtering power divider with complex source and load impedances," 2016 IEEE Int. Symp. Antennas and Propagation (APSURSI), 1719-1720, 2016.
doi:10.1109/APS.2016.7696566

18. Skaik, T. F., M. J. Lancaster, and F. Huang, "Synthesis of multiple output coupled resonator circuits using coupling matrix optimisation," IET Microw. Antennas Propag., Vol. 5, 1081-1088, 2011.
doi:10.1049/iet-map.2010.0447

19. Deng, Y., J. Wang, L. Zhu, et al. "Filtering power divider with good isolation performance and harmonic suppression," IEEE Microw. Wireless Compon. Lett., Vol. 26, 984-986, 2016.
doi:10.1109/LMWC.2016.2623244

20. Chen, C. F. and C. Y. Lin, "Compact microstrip filtering power dividers with good in-band isolation performance," IEEE Microw. Wireless Compon. Lett., Vol. 24, 17-19, 2014.
doi:10.1109/LMWC.2013.2287243

21. Hong, J. S. and M. J. Lancaster, "Microstrip cross-coupled trisection bandpass filters with asymmetric frequency characteristics," Proc. Inst. Elect. Eng., Vol. 146, 84-90, 1999.

22. Zhang, X. Y., K. X. Wang, and B. J. Hu, "Compact filtering power divider with enhanced secondharmonic suppression," IEEE Microw. Wireless Compon. Lett., Vol. 23, 483-485, 2013.
doi:10.1109/LMWC.2013.2274993

23. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619