Vol. 71
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-23
Non-Contacting Sensor for Small Displacement and Vibration Monitoring Based on Reflection Coefficient Measurement
By
Progress In Electromagnetics Research M, Vol. 71, 1-8, 2018
Abstract
In some cases, such as at a boiler tank and other large-size mechanical systems, it is more realistic to employ a non-contacting sensor to detect small displacement or vibration. In this paper, a non-contacting sensor for monitoring small displacement or vibration based on measurement of antenna reflection coefficient is proposed. A theoretical and numerical study is performed to investigate the proposed method and to determine the post processing method associated with the antenna reflection coefficient data. To avoid the ambiguity in the measured data, the detection of both the magnitude and phase components of the antenna reflection coefficient is required to compute the small displacement of the target. The distance between antenna and target has to be determined in order to minimize the ambiguity range in the data. The frequency domain observation is more appropriate for determining the amplitude and frequency of the target vibration. Magnitude detection, phase detection and Fourier analysis are used as main tools in the post-processing part of the proposed method.
Citation
Aloysius Adya Pramudita, Dyonisius Dony Ariananda, and Edwar, "Non-Contacting Sensor for Small Displacement and Vibration Monitoring Based on Reflection Coefficient Measurement," Progress In Electromagnetics Research M, Vol. 71, 1-8, 2018.
doi:10.2528/PIERM18051102
References

1. Lee, Y. S., P. N. Pathirana, C. L. Steinfort, and T. Caelli, "Monitoring and analysis of respiratory patterns using microwave doppler radar," IEEE Journal of Translational Engineering in Health and Medicine, Vol. 2, 1-12, 2014, doi: 10.1109/JTEHM.2014.2365776.
doi:10.1109/JTEHM.2014.2365776

2. Lee, Y. S., P. N. Pathirana, R. J. Evans, and C. L. Steinfort, "Noncontact detection and analysis of respiratory function using microwave doppler radar," Journal of Sensors, Vol. 2015, Article ID 548136, 13 pages, 2015, doi:10.1155/2015/548136.

3. Hsieh, C. H., Y. F. Chiu, Y. H. Shen, T. S. Chu, and Y. H. Huang, "A UWB radar signal processing platform for real-time human respiratory feature extraction based on four-segment linear waveform model," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 1, 219-23, Feb. 2016, doi:10.1109/TBCAS.2014.2376956.
doi:10.1109/TBCAS.2014.2376956

4. Li, C., J. Ling, J. Li, and J. Lin, "Accurate doppler radar noncontact vital sign detection using the RELAX algorithm," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 3, 687-695, Mar. 2010, doi:10.1109/TIM.2009.2025986.
doi:10.1109/TIM.2009.2025986

5. Xiong, Y., S. Chen, X. Dong, Z. Peng, and W. Zhang, "Accurate measurement in doppler radar vital sign detection based on parameterized demodulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4483-4492, Nov. 2017, doi:10.1109/TMTT.2017.2684138.
doi:10.1109/TMTT.2017.2684138

6. Perrone, G. and A. Vallan, "A low-cost optical sensor for noncontact vibration measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 5, 1650-1656, May 2009, doi: 10.1109/TIM.2008.2009144.
doi:10.1109/TIM.2008.2009144

7. Luzi, G., M. Crosetto, and E. Fernandez, "Radar interferometry for monitoring the vibration characteristics of buildings and civil structures: Recent case studies in Spain," Sensors, Vol. 17, 669, 2017, doi:10.3390/s17040669.
doi:10.3390/s17040669

8. Moll, J., K. Bechtel, B. Hils, and V. Krozer, "Mechanical vibration sensing for structural health monitoring using a millimeter-wave doppler radar sensor ," 7th European Workshop on Structural Health Monitoring, Nantes, France, Jul. 2014.

9. Vinci, G., et al. "Six-port microwave interferometer radar for mechanical vibration analysis," 2013 European Microwave Conference, 1599-1602, Nurember, 2013, doi: 10.23919/EuMC.2013.6686978.

10. Buscarino, A., L. Fortuna, C. Famoso, and M. Frasca, "Passive and active vibrations allow self-organization in large-scale electromechanical systems," International Journal of Bifurcation and Chaos, Vol. 26, No. 7, 1650123.1-10, 2016, doi: 10.1142/S0218127416501236.
doi:10.1142/S0218127416501236

11. Budge, M. C., Jr. and S. R. German, Basic Radar Analysis, Artech House, 2015.

12. Mahafza, B. R., Radar Systems Analysis and Design Using Matlab, Taylor & Francis Group, CRC Press, 2013.

13. Skolnik, M. I., Radar Handbook, 3rd Ed., McGraw-Hill, 2008.

14. Pramudita, A. A., "Input impedance model of planar dipole antenna for wireless body area network (WBAN)," 2016 22nd Asia-Pacific Conference on Communications (APCC), 66-69, Yogyakara, Sep. 2016, doi:10.1109/APCC.2016.7581495.

15. Kraus, D., Antennas, 1st Ed., McGraw Hill, 1965.

16. Su, M.-B., I-H. Chen, and C.-H. Liao, "Using TDR cables and GPS for landslide monitoring in high mountain area," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 8, 1113-1121, Aug. 2009.
doi:10.1061/(ASCE)GT.1943-5606.0000074

17. Or, D. and S. B. Jones, "Time domain reflectometry (TDR) applications in Earth sciences," IEEE Antennas and Propagation Society International Symposium, (IEEE Cat. No. 02CH37313), Vol. 2, 324-327, 2002, doi: 10.1109/APS.2002.1016090.

18. Kim, S. M., J. H. Sung, W. Park, J. H. Ha, Y. J. Lee, and H. B. Kim, "Development of a monitoring system for multichannel cables using TDR," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 8, 1966-1974, Aug. 2014, doi:10.1109/TIM.2014.2304353.
doi:10.1109/TIM.2014.2304353