Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-13
Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical through -Hole Dielectric Cubes
By
Progress In Electromagnetics Research M, Vol. 76, 207-215, 2018
Abstract
We numerically demonstrate that an electromagnetically induced transparency (EIT) effect can be achieved in an all-dielectric metamaterial, whose micro unit consists of two cylindrical through-hole cubes (CTCs). Two CTCs produce electric and magnetic Mie resonances in the vicinity of 6.2 GHz, respectively. Specially, the appropriate control on the interaction between two Mie resonances can lead to destructive interference of scattering fields, and thus the EIT effect with low loss and high transmission can be achieved. The influences of key parameters of all-dielectric metamaterial on its EIT effects are also investigated. In addition, the slow wave property of proposed structure is verified by computing the group delay, and the superiority of CTC is discussed. Such an all-dielectric metamaterial may have potential applications in areas such as low loss slow wave devices and high sensitivity sensors.
Citation
Lei Zhu, Xin Zhao, Chunhui Zhao, Liang Dong, Feng Juan Miao, Chao Hui Wang, and Jing Guo, "Low Loss and High Transmission Electromagnetically Induced Transparency (EIT) Effect in Cylindrical through -Hole Dielectric Cubes," Progress In Electromagnetics Research M, Vol. 76, 207-215, 2018.
doi:10.2528/PIERM18082309
References

1. Harris, S. E., J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Physical Review Letters, Vol. 64, 1107-1110, 1990.
doi:10.1103/PhysRevLett.64.1107

2. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Physical Review Letters, Vol. 66, 2593-2596, 1991.
doi:10.1103/PhysRevLett.66.2593

3. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Reviews of Modern Physics, Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

4. Khardikov, V. V., E. O. Iarko, and S. L. Prosvirnin, "A giant red shift and enhancement of the light confinement in a planar array of dielectric bars," J. Opt., Vol. 14, 035103, 2012.
doi:10.1088/2040-8978/14/3/035103

5. Tidstrom, J., C. W. Neff, and L. M. Andersson, "Photonic crystal cavity embedded in electromagnetically induced transparency media," J. Opt., Vol. 12, 035105, 2010.
doi:10.1088/2040-8978/12/3/035105

6. Wan, M. L., J. N. He, Y. L. Song, and F. Q. Zhou, "Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling," Physics Letters A, Vol. 379, 1791-1795, 2015.
doi:10.1016/j.physleta.2015.05.011

7. Hu, S., H. L. Yang, S. Han, X. J. Huang, and B. X. Xiao, "Tailoring dual-band electromagnetically induced transparency in planar metamaterials," J. Appl. Phys., Vol. 117, 043107, 2015.
doi:10.1063/1.4906853

8. Alonso-Gonzalez, P., P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, "Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas," Optics Express, Vol. 21, 1270-1280, 2013.
doi:10.1364/OE.21.001270

9. Zhang, K., C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, "Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial," Optics Letters, Vol. 39, 3539-3542, 2014.
doi:10.1364/OL.39.003539

10. Duan, X. Y., S. Q. Chen, H. F. Yang, H. Cheng, J. J. Li, W. W. Liu, C. Z. Gu, and J. G. Tian, "Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials," Appl. Phys. Lett., Vol. 101, 143105, 2012.
doi:10.1063/1.4756944

11. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

12. Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

13. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 063901, 2009.
doi:10.1103/PhysRevLett.102.053901

14. Vafapour, Z. and H. Alaei, "Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials," Plasmonics, Vol. 12, 479-488, 2017.
doi:10.1007/s11468-016-0288-0

15. Zhu, L., L. Dong, J. Guo, F. Y. Meng, and Q. Wu, "Tunable electromagnetically induced transparency in hybrid graphene/all-dielectric metamaterial," Appl. Phys. A, Vol. 123, 192, 2017.
doi:10.1007/s00339-017-0821-9

16. Ding, P., J. N. He, J. Q. Wang, C. Z. Fan, and E. J. Liang, "Electromagnetically induced transparency in all-dielectric metamaterial-waveguide system," Applied Optics, Vol. 54, 3708-3714, 2015.
doi:10.1364/AO.54.003708

17. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon-induced transparency," Physical Review Letters, Vol. 104, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902

18. Jin, X. R., Y. H. Lu, J. Park, H. Y. Zheng, F. Gao, Y. Lee, J. Y. Rhee, K. W. Kim, H. Cheong, and W. H. Jang, "Manipulation of electromagnetically-induced transparency in planar metamaterials based on phase coupling," J. Appl. Phys., Vol. 111, 073101, 2012.
doi:10.1063/1.3699197

19. Zhu, L., F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. H. Fu, K. Zhang, and G. H. Yang, "Magnetic metamaterial analog of electromagnetically induced transparency and absorption," Journal of Applied Physics, Vol. 117, 17D146, 2015.
doi:10.1063/1.4916189

20. Ding, C. F., Y. T. Zhang, J. Q. Yao, C. L. Sun, D. G. Xu, and G. Z. Zhang, "Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials," Chin. Phys. B, Vol. 23, 124203, 2014.
doi:10.1088/1674-1056/23/12/124203

21. Yang, Y. M., I. I. Kravchenko, D. P. Briggs, and J. Valentine, Dielectric metasurface analogue of electromagnetically induced transparency, Vol. 5, 5753, Nat. Commun., 2014.

22. Zhang, F. L., Q. Zhao, J. Zhou, and S. X. Wang, "Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial," Optics Express, Vol. 21, 19675-19680, 2013.
doi:10.1364/OE.21.019675

23. Meng, F. Y., Q. Wu, D. Erni, K. Wu, and J. Lee, "Polarization-Independent Metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 3013-3022, 2012.
doi:10.1109/TMTT.2012.2209455

24. Zhang, J. F., W. Liu, X. D. Yuan, and S. Q. Qin, "Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials," J. Opt., Vol. 16, 125102, 2014.
doi:10.1088/2040-8978/16/12/125102

25. Zhang, S., A. G. Dentcho, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401

26. Li, H. M., S. B. Liu, S. Y. Liu, and H. F. Zhang, "Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance," Appl. Phys. Lett., Vol. 105, 133514, 2014.
doi:10.1063/1.4897194

27. Li, H. M., S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, "Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response," Appl. Phys. Lett., Vol. 106, 083511, 2015.
doi:10.1063/1.4913888

28. Zhu, L., L. Dong, F. Y. Meng, and Q. Wu, "Wide-angle and polarization-independent electromagnetically induced transparency-like effect based on pentacyclic structure," J. Opt., Vol. 16, 015103, 2014.
doi:10.1088/2040-8978/16/1/015103

29. Ren, M., Y. F. Yu, J. M. Tsai, H. Cai, W. M. Zhu, D. L. Kwong, and A. Q. Liu, "Design and experiments of a nano-opto-mechanical switch using EIT-like effects of coupled-ring resonator Solid-State Sensors," Actuators and Microsystems Conference, 1436-1439, Beijing, China, 2011.

30. Zhang, J. F., W. Liu, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, "Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators," Optics Express, Vol. 22, 30889-30898, 2014.
doi:10.1364/OE.22.030889

31. Li, L. Y., J. F. Wang, H. Ma, J. Wang, M. D. Feng, H. L. Du, M. B. Yan, J. Q. Zhang, S. B. Qu, and Z. Xu, "Achieving all-dielectric metamaterial band-pass frequency selective surface via high-permittivity ceramics," Appl. Phys. Lett., Vol. 108, 122902, 2016.
doi:10.1063/1.4944644

32. Zhao, Q., J. Zhou, F. L. Zhang, and D. Lippens, "Mie resonance-based dielectric metamaterials," Materials Today, Vol. 12, 60-69, 2009.
doi:10.1016/S1369-7021(09)70318-9

33. Jahani, S. and Z. Jacob, "All-dielectric metamaterials," Nature Nanotechnology, Vol. 11, 23-36, 2016.
doi:10.1038/nnano.2015.304

34. Wei, Z. C., X. P. Li, N. F. Zhong, X. P. Tan, X. M. Zhang, H. Z. Liu, H. Y. Meng, and R. S. Liang, "Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device," Plasmonics, Vol. 12, 1-7, 2016.

35. Kang, M., Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, "Slow light in a simple metamaterial structure constructed by cut and continuous metal strips," Appl. Phys. B, Vol. 100, 699-703, 2010.
doi:10.1007/s00340-010-4184-6