Vol. 78
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-11
Single Feed Circularly Polarized Antenna Loaded with Complementary Split Ring Resonator (CSRR)
By
Progress In Electromagnetics Research M, Vol. 78, 175-184, 2019
Abstract
In this paper, complementary split ring resonator (CSRR) based single feed rectangular microstrip antennas are designed for circular polarization. In the first antenna design, two CSRRs are loaded on ground, and for the second design, two CSRRs are loaded on patch with identical orientation of meta-resonators in both cases. CSRRs are used to diminish the resonance frequency of the antenna, and thus the antenna size miniaturization can be achieved. Overall dimensions of the two antennas are (50×50×1.6) mm3, and the impedance bandwidth for S11 < -10 dB exhibits between 2.3 and 2.4 GHz which is useful for wireless communication service. The characteristics of the proposed antennas, i.e., reflection coefficient, axial ratio, gain, and radiation patterns, are observed and compared for the two cases. The proposed two antennas have been designed and simulated using CST Microwave studio 14. Measured reflection coefficient, gain, and radiation pattern are in good agreement with the simulated result.
Citation
Soumik Dey, Santanu Mondal, and Partha Pratim Sarkar, "Single Feed Circularly Polarized Antenna Loaded with Complementary Split Ring Resonator (CSRR)," Progress In Electromagnetics Research M, Vol. 78, 175-184, 2019.
doi:10.2528/PIERM18090503
References

1. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, No. 1, 7-23, 1992.
doi:10.1109/5.119564

2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

3. Sharma, P. C. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 31, No. 6, 949-955, 1983.
doi:10.1109/TAP.1983.1143162

4. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "Circularly polarized 2 × 2 MIMO antenna for WLAN applications," Progress In Electromagnetics Research C, Vol. 66, 97-107, 2016.
doi:10.2528/PIERC16051905

5. Sharma, W. C., H. Kumar, and G. Kumar, "Single feed dual band circularly polarized stub loaded tunable microstrip patch antenna," 2016 IEEE Asia-Pacific Microwave Conference (APMC), 1-4, 2016.

6. Qing, X. and Z. N. Chen, "Compact asymmetric-slit microstrip antennas for circular polarization," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 285-288, 2011.
doi:10.1109/TAP.2010.2090468

7. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

8. Alizadeh, F., C. Ghobadi, J. Nourinia, and R. Zayer, "Bandwidth enhancement of patch antennas loaded with complementary split-ring resonators," 2014 IEEE 7th International Symposium on Telecommunications (IST), 224-229, 2014.
doi:10.1109/ISTEL.2014.7000702

9. Ramachandran, A., S. V. Pushpakaran, M. Pezholil, and V. Kesavath, "A four port MIMO antenna using concentric square ring patches loaded with CSRR for high isolation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1196-1199, 2016.
doi:10.1109/LAWP.2015.2499322

10. Rajeshkumar, V. and S. Raghavan, "A compact CSRR loaded dual band microstrip patch antenna for wireless applications," 2013 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1-4, 2013.

11. Jha, N., R. Pandeeswari, and S. Raghavan, "A performance improved compact size microstrip antenna loaded with CSRR for GSM, WLAN/WiMAX and WAVE applications," IEEE International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), 1-6, 2016.

12. Jie, C., L. Z. Gang, F. Lu, and Z. Shou-Zheng, "A multi-system and dual-band miniaturization microstrip antenna loaded with CSRR for CNSS applications," 2014 IEEE 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 450-453, 2014.
doi:10.1109/APCAP.2014.6992523

13. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-778, 2012.
doi:10.1109/TAP.2011.2173120

14. Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeris, "A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring," IEEE Antennas Wireless Propag. Lett., Vol. 16, 577-580, 2017.
doi:10.1109/LAWP.2016.2590477

15. Simruni, M. and S. Jam, "A circularly-polarized compact wideband patch antenna loaded by metamaterial structures," Progress In Electromagnetics Research C, Vol. 78, 93-104, 2017.
doi:10.2528/PIERC17070702

16. "CST Microwave Studio Manual,", ver. 14, Computer Simulation Technology, Framingham, MA.

17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-Interscince, 2006.

18. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, November 1999.
doi:10.1109/22.798002

19. Smith, D. R., Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

20. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

21. Ortiz, N., F. Falcone, and M. Sorolla, "Enhanced gain dual band patch antenna based on complementary rectangular split-ring resonators," Microw. Opt. Technol. Lett., Vol. 53, No. 3, 590-594, 2011.
doi:10.1002/mop.25797

22. Limaye, A. U. and J. Venkataraman, "Size reduction in microstrip antennas using left-handed materials realized by complementary split-ring resonators in ground plane," 2007 IEEE International Symposium in Antennas and Propagation Society, 1869-1872, 2007.
doi:10.1109/APS.2007.4395883

23. Ma, J. J., X. Y. Cao, and T. Liu, "Design the size reduction patch antenna based on complementary split ring resonators," 2010 International Conference in Microwave and Millimeter Wave Technology (ICMMT), 401-402, 2010.
doi:10.1109/ICMMT.2010.5524983

24. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microw. Opt. Technol. Lett., Vol. 57, No. 2, 292-296, 2015.
doi:10.1002/mop.28835

25. Xie, Y. H., C. Zhu, L. Li, and C. H. Liang, "A novel dual-band metamaterial antenna based on complementary split ring resonators," Microw. Opt. Technol. Lett., Vol. 54, No. 4, 1007-1009, 2012.
doi:10.1002/mop.26715

26. Lee, Y. and Y. Hao, "Characterization of microstrip patch antennas on metamaterial substrates loaded with complementary split-ring resonators," Microw. Opt. Technol. Lett., Vol. 50, No. 8, 2131-2135, 2008.
doi:10.1002/mop.23596

27. Rajkumar, R. and U. K. Kommuri, "A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation," Wireless Personal Communications, Vol. 101, No. 2, 1075-1089, 2018.
doi:10.1007/s11277-018-5749-7

28. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A miniaturized printed monopole antenna loaded with hexagonal complementary split ring resonators for multiband operations," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 7, e21401, 2018.
doi:10.1002/mmce.21401

29. Boopathi, R. R. and S. K. Pandey, "A CPW-fed circular patch antenna inspired by reduced ground plane and CSRR slot for UWB applications with notch band," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 745-749, 2017.
doi:10.1002/mop.30386

30. Xiao, B., X. Wang, and J. Zhao, "A dual band notched ultra-wideband antenna using complementary split ring resonators," 2010 IEEE International Conference in Wireless Communications, Networking and Information Security (WCNIS), 107-109, 2010.