Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-28
Decoupler Design for MIMO Antennas of USB Dongle Applications Using Ground Mode Coupling Analysis
By
Progress In Electromagnetics Research M, Vol. 76, 113-122, 2018
Abstract
In this paper, the impact of decoupler type has been analysed on the performance of planar inverted-F antenna (PIFA)-based multiple-input multiple-output (MIMO) antenna. A T-type and a loop-type decoupler have been employed for the isolation of the MIMO antennas, and the performances of the two cases have been compared. The decouplers have been selected based on their different coupling mechanisms with the dominant ground mode. The antennas have been designed for the ground configuration of a USB dongle operating at 2.45 GHz band. Characteristic mode analysis of the ground plane has been carried out, and the MIMO systems have been analysed based on the coupling among the antenna, decoupler and the dominant characteristic mode of the ground plane. It has been observed that the coupling between the decoupler and the ground mode significantly affects the radiation efficiency as well as the diversity performance of the MIMO antenna.
Citation
Muhammad Zeeshan Zahid, Longyue Qu, Hyung Hoon Kim, and Hyeongdong Kim, "Decoupler Design for MIMO Antennas of USB Dongle Applications Using Ground Mode Coupling Analysis," Progress In Electromagnetics Research M, Vol. 76, 113-122, 2018.
doi:10.2528/PIERM18092604
References

1. Foschini, Jr., G. J., "Layered spacetime architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Tech. J., Vol. 1, No. 2, 41-59, 1996.
doi:10.1002/bltj.2015

2. Foschini, Jr., G. J. and M. J. Gans, "On limits of wireless communication in a fading environment when using multiple antennas," Wireless Personal Commun., Vol. 6, 311-335, 1998.
doi:10.1023/A:1008889222784

3. Jeon, S., Y. Liu, S. Ju, et al. "PIFA with a parallel resonance feed structure for wide-band operation," Electronics Letters, Vol. 47, No. 23, 1263-1265, 2011.
doi:10.1049/el.2011.2843

4. Lee, J., Y. Liu, H. Kim, et al. "PIFA with a dual resonance feed structure for enhancement of impedance bandwidth," Electronics Letters, Vol. 49, No. 15, 921-922, 2013.
doi:10.1049/el.2013.1432

5. Liu, Y., X. Lu, H. Jang, et al. "Loop-type ground antenna using resonated loop feeding, intended for mobile devices," Electronics Letters, Vol. 49, No. 7, 426-427, 2013.
doi:10.1049/el.2011.0094

6. Liu, Y., J. Lee, H. Kim, et al. "Ground radiation method using slot with coupling capacitors," Electronics Letters, Vol. 49, No. 15, 921-922, 2013.
doi:10.1049/el.2013.1432

7. Elghannai, E. A. and R. G. Rojas, "Design of USB dongle antenna for WLAN applications using theory of characteristic modes," Electronics Letters, Vol. 50, No. 4, 249-251, 2014.
doi:10.1049/el.2013.3929

8. Liu, W.-C. and Y.-L. Chen, "Compact strip-monopole antenna for WLAN-band USB dongle application," Electronics Letters, Vol. 47, No. 8, 479-480, 2011.
doi:10.1049/el.2010.3234

9. Liao, W.-J., S.-H. Chang, J. T. Yeh, et al. "Compact dual-band WLAN diversity antennas on USB Dongle platform," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 109-118, 2014.
doi:10.1109/TAP.2013.2287898

10. Lee, C.-J., L.-T. Hwang, T. S. Horng, et al. "A MIMO antenna with built-in isolation for WLAN USB dongle applications," Asia-Pacific Microwave Conference, Proceedings, 1055-1057, 2013.

11. Tseng, Y.-K., Y.-C. Lin, L. T. Hwang, et al. "Implementation of a MIMO antenna design for USB dongle applications," Electronic Components and Technology Conference, 2089-2094, 2013.

12. Li, Z., Z. Du, M. Takahashi, et al. "Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 473-481, 2012.
doi:10.1109/TAP.2011.2173432

13. Wu, T. Y., S. T. Fang, and K. L.Wong, "Printed diversity monopole antenna forWLAN operation," Electronics Letters, Vol. 38, No. 25, 1625-1626, 2002.
doi:10.1049/el:20021188

14. Toktas, A. and A. Akdagli, "Wideband MIMO antenna with enhanced isolation for LTE, WiMAX and WLAN mobile handsets," Electronics Letters, Vol. 50, No. 10, 723-724, 2014.
doi:10.1049/el.2014.0686

15. Chi, G., L. Binhong, and D. Qi, "Dual-band printed diversity antenna for 2.4/5.2 GHz WLAN application," Microw. Opt. Technol. Lett., Vol. 45, No. 6, 561-563, 2005.
doi:10.1002/mop.20880

16. Choukiker, Y. K., S. K. Sharma, and S. K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1483-1488, 2014.
doi:10.1109/TAP.2013.2295213

17. Yao, Y., X. Wang, X. Chen, et al. "Novel diversity/MIMO PIFA antenna with broadband circular polarization for multimode satellite navigation," IEEE Antennas and Wireless Propag. Letters, Vol. 11, 65-68, 2012.

18. Khan, M. S., A. D. Capobianco, A. I. Najam, et al. "Compact ultra-wideband diversity antenna with a floating parasitic digitated decoupling structure," IET Microw. Antennas Propag., Vol. 8, No. 10, 747-753, 2014.
doi:10.1049/iet-map.2013.0672

19. Li, J. F., A. X. Chu, and T. G. Huang, "A compact wideband MIMO antenna with two novel bent slits," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 482-489, 2012.
doi:10.1109/TAP.2011.2173452

20. Kokkinos, T., E. Liakou, and A. P. Feresidis, "Decoupling antenna elements of PIFA arrays on handheld devices," Electronics Letters, Vol. 44, No. 25, 1442-1444, 2008.
doi:10.1049/el:20083032

21. Zhang, S., B. K. Lau, Y. Tan, et al. "Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1521-1531, 2012.
doi:10.1109/TAP.2011.2180329

22. Saraereh, O. A., C. J. Panagamuwa, and J. C. Vardaxoglou, "Low correlation multiple antenna system for mobile phone applications using novel decoupling slots in ground plane," IEEE Antennas and Propagation Conf., 577-581, Loughborough, England, 2013.

23. Qu, L., R. Zhang, and H. Kim, "Decoupling between ground radiation antennas with ground-coupled loop-type isolator for WLAN applications," IET Microw. Antennas Propag., Vol. 10, No. 5, 546-552, 2016.
doi:10.1049/iet-map.2015.0562

24. Qu, L., H. Lee, H. Shin, et al. "MIMO antennas using controlled orthogonal characteristic modes by metal rims," IET Microw. Antennas Propag., Vol. 11, No. 7, 1009-1015, 2017.
doi:10.1049/iet-map.2016.0995

25. Szini, I., A. Tatomirescu, and G. F. Pedersen, "On small terminal MIMO antennas, harmonizing characteristic modes with ground plane geometry," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1487-1497, 2015.
doi:10.1109/TAP.2015.2398111

26. Kishor, K. and V. A. Hum, "Two-port chassis-mode MIMO antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3290-3298, 2014.
doi:10.1109/TAP.2014.2313634

27. Kishor, K. and V. A. Hum, "Multiport multiband chassis-mode antenna design using characteristic modes," IEEE Antennas and Wireless Propag. Letters, Vol. 16, 609-612, 2017.
doi:10.1109/LAWP.2016.2594093

28. Qin, P., Y. J. Guo, R. Andrew, et al. "A pattern reconfigurable U-slot antenna and its applications in MIMO systems," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 516-528, 2012.
doi:10.1109/TAP.2011.2173439

29. Ren, J., X. Yang, J. Yin, and Y. Yin, "A novel antenna with reconfigurable patterns using H-shaped structures," IEEE Antennas and Wireless Propag. Letters, Vol. 14, 915-918, 2015.
doi:10.1109/LAWP.2014.2387292

30. Rhee, C., Y. Kim, T. Park, and el al., "Pattern-reconfigurable MIMO antenna for high isolation and low correlation," IEEE Antennas and Wireless Propag. Letters, Vol. 13, 1373-1376, 2014.
doi:10.1109/LAWP.2014.2339012

31. Zhou, Y., S. Raviraj, and S. V. Hum, "Design and evaluation of pattern reconfigurable antennas for MIMO applications," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1084-1092, 2014.
doi:10.1109/TAP.2013.2284874

32. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "A 2 × 2 dual-band MIMO antenna with polarization diversity for wireless applications," Progress In Electromagnetics Research C, Vol. 61, 91-103, 2016.
doi:10.2528/PIERC15110401

33. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6679-6686, 2017.
doi:10.1109/TAP.2017.2671028

34. Su, S. W., C. T. Lee, and F. S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 456-463, 2012.
doi:10.1109/TAP.2011.2173450

35. Li, Z., M. S. Han, X. Zhao, et al. "MIMO antenna with isolation enhancement for wireless USB dongle application at WLAN band," Proc. Asia-Pacific Microw. Conf. (APMC), 758-761, 2010.

36. Zhang, S., B. K. Lau, Sunesson, et al. "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4372-4380, Sep. 2012.
doi:10.1109/TAP.2012.2207049

37. Lei, Q., F. Zhao, K. Xiao, et al. "Transmit receive isolation improvement of antenna arrays by using EBG structures," IEEE Antennas and Wireless Propag. Letters, Vol. 11, 93-96, 2012.
doi:10.1109/WCL.2012.012712.120013

38. Yang, F. and Y. Samii, "Microstrip antennas integrated with electromagnetic band gap structures: A low mutual coupling design for array applications," IEEE Trans. Antennas and Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

39. Tang, X., K. Mouthaan, and J. C. Coetzee, "Tunable decoupling and matching network for diversity enhancement of closely spaced antennas," IEEE Antennas and Wireless Propag. Letters, Vol. 11, 268-271, 2012.
doi:10.1109/LAWP.2012.2188773

40. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

41. Harrington, R. F., Time-Harmonic Electromagnetic Fields, Macgraw-Hill, New York, 1961.

42. Zahid, Z. and H. Kim, "Tunable slot type ground radiation antenna with dual band operation using LC resonator," Journal of Electromagnetic Engineering and Science, Vol. 17, No. 2, 71-75, 2017.
doi:10.5515/JKIEES.2017.17.2.71

43. Cabedo, M., E. Antonino, A. Valero, et al. "Theory of characteristic modes revisited: A contribution to the design of the antennas for modern applications," IEEE Trans. Antennas and Propagation Magazine, Vol. 49, No. 5, 52-68, 2007.
doi:10.1109/MAP.2007.4395295

44. Lee, J., Y. Liu, and H. Kim, "Mobile antenna using multi-resonance feed structure for wideband operation," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5851-5855, 2014.
doi:10.1109/TAP.2014.2346534

45. Qu, L., R. Zhang, H. Shin, et al. "Performance enhancement of ground radiation antenna for Z-wave applications using tunable metal loads," Electronics Letters, Vol. 52, No. 22, 1827-1828, 2016.
doi:10.1049/el.2016.1682

46. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115