Vol. 77
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-02
Performance Enhancement of 60 GHz CMOS Band Pass Filter Employing Oxide Height Virtual Increase
By
Progress In Electromagnetics Research M, Vol. 77, 125-134, 2019
Abstract
A high selectivity compact size coupled open-loop resonator (OLR-) band pass filter (BPF) in 0.18 μm TSMC Complementary Metal Oxide Semiconductor (CMOS) with low insertion (IL) is presented in this manuscript. First, shape optimization and folding are used to guarantee compact size. Then, high performance of the proposed BPF is obtained by virtually increasing the height of the oxide between the OLR's traces and their ground plane. This virtual increase in the oxide height is realized by etching large slot areas below each of the OLRs. Consequently, the traces are characterized by wider width which in return exhibit lower attenuation constant and hence lower IL. The simulated and measured responses have a very good agreement. The fabricated BPF shows an IL of 3.5 dB at 59 GHz with a return loss of 15 dB and a fractional bandwidth of 16.5%. The fabricated chip has an area of 378 × 430 μm2 including the measurements pads.
Citation
Nessim Mahmoud, Adel Barakat, Mohammed Nasr, and Ramesh K. Pokharel, "Performance Enhancement of 60 GHz CMOS Band Pass Filter Employing Oxide Height Virtual Increase," Progress In Electromagnetics Research M, Vol. 77, 125-134, 2019.
doi:10.2528/PIERM18101608
References

1. Daniels, R. C., R. W. Heath, and Jr., "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Vehicular Technology Magazine, Vol. 2, No. 3, 41-50, 2007.
doi:10.1109/MVT.2008.915320

2. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, 1390-1436, 2011.
doi:10.1109/JPROC.2011.2143650

3. Chaturvedi, S., M. Bozanic, and S. Sinha, "Millimeter wave passive bandpass filters," Microwave Journal, Vol. 60, 2017.

4. Pokharel, R. K., X. Liu, R. Dong, A. Dayang, H. Kanaya, and K. Yoshida, "60 GHz-band low loss on-chip band pass filter with patterned ground shields for millimeter wave CMOS SoC," 2011 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-4, 2011.

5. Franc, A. L., E. Pistono, D. Gloria, and P. Ferrari, "High-performance shielded coplanar waveguides for the design of CMOS 60-GHz bandpass filters," IEEE Transactions on Electron Devices, Vol. 59, 1219-1226, 2012.
doi:10.1109/TED.2012.2186301

6. Ma, K., S. Mou, and K. S. Yeo, "Miniaturized 60-GHz on-chip multimode quasi-elliptical bandpass filter," IEEE Electron Device Letters, Vol. 34, 945-947, 2013.
doi:10.1109/LED.2013.2265165

7. Yeh, L.-K., Y.-C. Chen, and H.-R. Chuang, "A novel ultra-compact and low-insertion-loss 77 GHz CMOS on-chip bandpass filter with adjustable transmission zeros," 2014 44th European Microwave Conference (EuMC), 1056-1059, 2014.

8. Barakat, A., R. Pokharel, and T. Kaho, "60 GHz on-chip mixed coupled BPF with H-shaped defected ground structures," Electronics Letters, Vol. 52, 533-535, 2016.
doi:10.1049/el.2015.4465

9. Mahmoud, N., A. Barakat, A. B. Abdel-Rahman, A. Allam, and R. K. Pokharel, "Compact size on-chip 60 GHz H-shaped resonator BPF," IEEE Microwave and Wireless Components Letters, Vol. 26, 681-683, 2016.
doi:10.1109/LMWC.2016.2597219

10. Barakat, A., N. Mahmoud, and R. K. Pokharel, "Low insertion loss 60 GHz CMOS H-shaped resonator BPF," 2017 IEEE Radio and Wireless Symposium (RWS), 187-189, 2017.
doi:10.1109/RWS.2017.7885983

11. Barakat, A., M. Hanif, and R. K. Pokharel, "Miniaturized low loss 60 GHz CMOS mixed coupled BPF with patterned ground shield," Microwave and Optical Technology Letters, Vol. 58, 697-699, 2016.
doi:10.1002/mop.29650

12. Chen, Y.-M. and S.-F. Chang, "A ultra-compact 77-GHz CMOS bandpass filter using grounded pedestal stepped-impedance stubs," 2011 41st European Microwave Conference (EuMC), 194-197, 2011.

13. Zeng, J., X. Li, W. Feng, and H. Zhu, "An ultra-compact and low insertion loss 60 GHz CMOS on-chip bandpass filter," Microwave and Optical Technology Letters, Vol. 60, 3050-3053, 2018.
doi:10.1002/mop.31403

14. Hong, J. and M. Lancaster, "Canonical microstrip filter using square open-loop resonators," Electronics Letters, Vol. 31, 2020-2022, 1995.
doi:10.1049/el:19951370

15. Hong, J.-S. and M. Lancaster, "Microstrip cross-coupled trisection bandpass filters with asymmetric frequency characteristics," IEE Proceedings-Microwaves, Antennas and Propagation, Vol. 146, 84-90, 1999.
doi:10.1049/ip-map:19990146

16. Hong, J.-S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave theory and Techniques, Vol. 44, 2099-2109, 1996.
doi:10.1109/22.543968

17. Hong, J.-S. and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1098-1107, 2000.
doi:10.1109/22.848492

18. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

19. Nwajana, A. O. and K. S. K. Yeo, "Microwave diplexer purely based on direct synchronous and asynchronous coupling," Radioengineering, Vol. 25, 247-252, 2016.
doi:10.13164/re.2016.0247

20. Hsieh, L.-H. and K. Chang, "Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1340-1345, 2002.
doi:10.1109/22.999148

21. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.