Vol. 77
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-02
Reaserch on a Water-Immersed Wide Band Horn Antenna with Water-Filled Coaxial Impedance Matching Structure
By
Progress In Electromagnetics Research M, Vol. 77, 115-123, 2019
Abstract
In order to improve the resolution of microwave biomedical imaging, a new method has been proposed in this pa-per, using a water-immersed wide band horn antenna at S-band. Considering the microwave penetration depth and the reflection at the interface between tissues and environment in deionized water, 2.45 GHz is selected as the central frequency of this antenna. Due to the high dielectric constant of water, the design of the impedance matching structure between the coaxial line and rectangular waveguide is most challenging. Therefore, the idea that using water as the medium of the coaxial impedance matching structure is proposed to deal with the problem of processing in our work. Simulated and experimental results show that this antenna has good impedance characteristics (S11 < -10 dB from 2.1 GHz to 3.8 GHz), good reasonable losses (5.1 dB total for two antennas and coaxial line at 3 GHz), and high maximum gain (8.52 dBi at 2.45 GHz).
Citation
Yang Yang, Lianghao Guo, Qing Zhou, Zhe Wu, Haibo Jiang, Zhongtuo Wang, Wenfei Bo, Jingchao Tang, Jialu Ma, Zhan-Liang Wang, Bao-Qing Zeng, and Yu-Bin Gong, "Reaserch on a Water-Immersed Wide Band Horn Antenna with Water-Filled Coaxial Impedance Matching Structure," Progress In Electromagnetics Research M, Vol. 77, 115-123, 2019.
doi:10.2528/PIERM18111602
References

1. Enander, B. and G. Larson, "Measurements of thermal electromagnetic radiation from the human body at microwave frequencies,", TRITA-TET-7602, Division of Electromagnetic Theory, Tire Royal Institute of Technology, Stockholm, Sweden, Mar. 1976.
doi:10.1088/0031-9155/29/10/002

2. Gore, J. C. and Y. S. Kang, "Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging," Physics in Medicine and Biology, Vol. 29, No. 10, 1189, 1984.
doi:10.1364/AO.47.000561

3. Zhang, E., J. Laufer, and P. Beard, "Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues," Applied Optics, Vol. 47, No. 4, 561-577, 2008.
doi:10.1109/10.532121

4. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, et al. "Microwave tomography: Two-dimensional system for biological imaging," IEEE Transactions on Biomedical Engineering, Vol. 43, No. 9, 869-877, 1996.
doi:10.1109/TMTT.1979.1129561

5. Jacobi, J. H., L. E. Larsen, and C. T. Hast, "Water-immersed microwave antennas and their application to microwave interrogation of biological targets," IEEE Trans. Microwave Theory Tech., Vol. 27, No. 1, 70-78, 1979.
doi:10.1109/10.52331

6. Jofre, L., M. S. Hawley, A. Broquetas, et al. "Medical imaging with a microwave tomographic scanner," IEEE Transactions on Biomedical Engineering, Vol. 37, No. 3, 303-312, 1990.

7. Schwan, H. P., "Radiation biology, medical applications, andradiation hazards," Microwave Power Engineering, E. C. Okress (ed.), Vol. 2, 215–232, Academic, New York, 1968.
doi:10.1109/TMTT.1977.1129191

8. Yamaura, I., "Measurements of 1.8–2.7 GHz microwave attenuation in the human torso," IEEE Trans. Microwave Theory Tech., Vol. 25, 707-710, Aug. 1977.

9. CST Studio Suite 2014, CST Computer Simulation Technology AG, Available at: www.cst.com.

10. Shao, Y. F., "A simplified design of wide band ridged horn antenna," Modern Radar, 2004 (in Chinese).
doi:10.1109/TMTT.1957.1125084

11. Chen, T. S., "Calculation of the parameters of ridge waveguides," IRE Transactions on Microwave Theory & Techniques, Vol. 5, No. 1, 12-17, 2003.
doi:10.1109/TAP.2016.2562669

12. Morabito, A. F., R. Palmeri, and T. Isernia, "A compressive-sensing-inspired procedure for array antenna diagnostics by a small number of phaseless measurements," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3260-3265, 2016.
doi:10.1109/MSMW.2004.1346178

13. Meriakri, V. V. and E. E. Chigrai, "Determination of alcohol and sugar content in water solutions by means of microwave," International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves, Vol. 2, 821-823, IEEE, 2004.
doi:10.1007/BF01008897

14. Liebe, H. J., G. A. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," International Journal of Infrared & Millimeter Waves, Vol. 12, No. 7, 659-675, 1991.

15. Peng, Y., "Numerical simulation of the dielectric properties of biological tissue in the terahertz band,", Lanzhou Jiaotong University, 2015 (in Chinese).