Vol. 82
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-02
Capacity Performance of Wireless OAM-Based Massive MIMO System
By
Progress In Electromagnetics Research M, Vol. 82, 149-156, 2019
Abstract
Orbital angular momentum (OAM) as a powerful candidate to enhance the spectral efficiency and system capacity by providing the new degree of freedom for multiplexing has been recently advocated in wireless communications. In this paper, we propose an OAM-based massive multiple-input multiple-output (MIMO) scheme to significantly improve the transmission performance of wireless communication system in line-of-sight scene.The uniform rectangular arrays (URAs) are used as transceivers in our system model, and the ideal OAM antenna model that is capable of providing OAM-channel independently is used as the array element. Multiple reference coordinate systems based on per transmitting antenna and the cumulative phase of specific radio vortices are used to describe the OAM-MIMO channel model. The results of numerical analysis indicate that the proposed OAM-based massive MIMO system could obtain an overwhelming capacity gain against the conventional MIMO system.
Citation
Fuchun Mao, Ming Huang, Jingjing Yang, Chengfu Yang, Tinghua Li, and Jialin Zhang, "Capacity Performance of Wireless OAM-Based Massive MIMO System," Progress In Electromagnetics Research M, Vol. 82, 149-156, 2019.
doi:10.2528/PIERM19030701
References

1. Djordjevic, I. B., "Multidimensional OAM-based secure high-speed wireless communications," IEEE Access, Vol. 5, 16416-16428, 2017.

2. Mao, F. C., M. Huang, C. F. Yang, T. H. Li, J. L. Zhang, and S. Y. Chen, "Orbital angular momentum generation using circular ring resonators in radio frequency," Chinese Phys. Lett., Vol. 35, No. 2, 020701, 2018.

3. Ren, Y. X., Z. Wang, P. C. Liao, L. Li, G. D. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, A. Willner, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, I. B. Djordjevic, M. A. Neifeld, and A. E. Willner, "Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m," Opt. Lett., Vol. 41, No. 3, 622-625, 2016.

4. Yan, Y., G. D. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. J. Bao, Y. X. Ren, Y. W. Gao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.

5. Shi, Y. and Y. Zhang, "Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray," IEEE Access, Vol. 6, 5341-5347, 2018.

6. Tamburini, F., E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, "Tripling the capacity of a point-to-point radio link by using electromagnetic vortices," Radio Sci., Vol. 50, No. 6, 501-508, 2015.

7. Yu, S. X., L. Li, G. M. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.

8. Mao, F., M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband generation of orbital angular momentum carrying beams in RF regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.

9. Yu, S. X., L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 12, 121903, 2016.

10. Edfors, O. and A. J. Johansson, "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Trans. Antenn. Propag., Vol. 60, No. 2, 1126-1131, 2012.

11. Cagliero, A. and R. Gaffoglio, "On the spectral efficiency limits of an OAM-based multiplexing scheme," IEEE Antenn. Wirel. Pr., Vol. 16, 900-903, 2016.

12. Cheng, W. C., H. L. Zhang, L. P. Liang, H. Y. Jing, and Z. Li, "Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmWave communications," IEEE Access, Vol. 6, 2732-2745, 2017.

13. Zheng, S. L., R. F. Dong, Z. F. Zhang, X. B. Yu, X. F. Jin, H. Chi, Z. N. Chen, and X. M. Zhang, "Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems," IEEE Access, Vol. 5, 25377, 2017.

14. Zhu, Q. B., T. Jiang, D. M. Qu, D. Chen, and N. R. Zhou, "Radio vortex multiple-input multiple-output communication systems with high capacity," IEEE Access, Vol. 3, 2456, 2015.

15. Lei, W., F. Jiang, Z. Yuan, J. Yang, G. Gui, and H. Sari, "Mode division multiple access: A new scheme based on orbital angular momentum in millimeter wave communications for fifth generation," IET Commun., Vol. 12, No. 12, 1416-1421, 2018.

16. Chen, R., H. Xu, M. Moretti, and J. D. Li, "Beam steering for the misalignment in UCA-based OAM communication systems," IEEE Wirel. Commun. Lett., Vol. 7, No. 4, 582585, 2018.

17. Opare, K., Y. Kuang, and J. Kponyo, "Mode combination in an ideal wireless OAM-MIMO multiplexing system," IEEE Wirel. Commun. Lett., Vol. 4, No. 4, 449-452, 2015.

18. Zhao, L. J., H. L. Zhang, and W. C. Cheng, "Fractal uniform circular arrays based multi-orbital-angular-momentum-mode multiplexing vortex radio MIMO," China Commun., Vol. 15, No. 9, 126-143, 2018.

19. Wang, L., X. H. Ge, R. Zi, and C. X. Wang, "Capacity analysis of orbital angular momentum wireless channels," IEEE Access, Vol. 5, 23069-23077, 2017.

20. Ge, X. H., R. Zi, X. S. Xiong, Q. Li, and L. Wang, "Millimeter wave communications with OAM-SM scheme for future mobile networks," IEEE J. Sel. Area. Comm., Vol. 35, No. 9, 2163-2177, 2017.