Vol. 81
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-23
Exact Analytical Method for Air-Gap Main Magnetic Field Computation and Cogging Torque of SMPM Motors
By
Progress In Electromagnetics Research M, Vol. 81, 75-84, 2019
Abstract
This paper presents an exact analytical method to compute the air-gap magnetic field of surface-mounted permanent-magnet (SMPM) motors for evaluating slotting effects accurately. Solution field regions are divided into air-gap domain, permanent magnet (PM) domain, and slot domains. The Laplace's equations or Poisson's equations of the sub-domains are contacted by boundary conditions and then solved by exact analytical method. The actual height of slot and distance between slots are taken into account in the computation. Magnetic field distributions and cogging torque computed with the proposed analytical method are compared with those issued from 2-D finite-element method (FEM), and the comparison results are consistent and show the correctness and effectiveness of the proposed analytical method.
Citation
Libing Jing, Junlin Chen, Zhangxian Huang, and Jun Gong, "Exact Analytical Method for Air-Gap Main Magnetic Field Computation and Cogging Torque of SMPM Motors," Progress In Electromagnetics Research M, Vol. 81, 75-84, 2019.
doi:10.2528/PIERM19040405
References

1. Noyal Doss, A., R. Brindha, K. Mohanraj, S. S. Dash, and K. M. Kavya, "A novel method for cogging torque reduction in permanent magnet brushless DC motor using T-shaped bifurcation in stator teeth," Progress In Electromagnetics Research M, Vol. 66, 99-107, 2018.

2. Onsal, M., B. Cumhur, Y. Demir, E. Yolacan, and M. Aydin, "Rotor design optimization of a new flux assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications," IEEE Trans. Magn., Vol. 54, No. 11, ID: 8206005, 2018.

3. Xie, K. F., D. W. Li, R. H. Qu, and D. Jiang, "Analysis and experimental comparison of spoke type and surface-mounted PM machines with fractional slot concentrated winding," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 1-6, 2016.

4. Zhou, Y., H. Li, and G. Meng, "Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape," IEEE Trans. Ind. Electro., Vol. 62, No. 6, 3438-3447, 2015.

5. Zhao, N. N. and W. G. Liu, "Loss calculation and thermal analysis of surface-mounted PM motor and interior PM motor," IEEE Trans. Magn., Vol. 51, No. 11, ID: 8112604, 2015.

6. Kumar, P., M. M. Reza, and R. K. Srivastava, "Analytical method for calculation of cogging torque reduction due to slot shifting in a dual stator dual rotor permanent magnet machine with semi-closed slots," Progress In Electromagnetics Research M, Vol. 70, 99-108, 2018.

7. Jing, L. B., R. H. Qu, W. B. Kong, D. Li, and H. L. Huang, "Genetic-algorithm-based analytical method of SMPM motors," 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 1-6, 2017.

8. Tiang, T. L., D. Ishak, C. P. Lim, and M. Rezal Mohamed, "Analytical method using virtual PM blocks to represent magnet segmentations in surface-mounted PM synchronous machines," Progress In Electromagnetics Research B, Vol. 76, 23-36, 2017.
doi:10.2528/PIERB17041501

9. Zhu, Z. Q., D. Howe, and E. Bolte, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors, Part I: Open-circuit field," IEEE Trans. Magn., Vol. 29, No. 1, 124-135, 1993.
doi:10.1109/20.195557

10. Zhu, Z. Q. and D. Howe, "Instantaneous magnetic field distribution in brushless magnet DC motors, Part III: Effect of stator slotting," IEEE Trans. Magn., Vol. 29, No. 1, 143-151, 1993.
doi:10.1109/20.195559

11. Zarko, D., D. Ban, and A. L. Thomas, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Trans. Magn., Vol. 42, No. 7, 1828-1837, 2006.
doi:10.1109/TMAG.2006.874594

12. Pahlavani, M. A. and H. R. Gholinejad Omran, "A new analytical description and FEA validation of an effective method to reduce the cogging torque in SM-AFPM motors," Progress In Electromagnetics Research M, Vol. 42, 189-197, 2015.
doi:10.2528/PIERM15051504