Vol. 83
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-15
Reduction of Mobile Phone Radiation Exposure Using Multi-Stopband Frequency Selective Surface
By
Progress In Electromagnetics Research M, Vol. 83, 9-18, 2019
Abstract
Here, a multi-stopband frequency selective surface (FSS), covering commercial frequency bands CDMA, GSM-900, GSM-1800, LTE-2200 MHz, Wi-Fi, and Bluetooth for mobile communication applications has been proposed employing a pair of concentric square ring patches as a unit cell. Possibilities of annular ring patch type FSS are explored first. Finally, the design comes up with a compact square ring patch type single layer FSS. It is also explored that by increasing the width of the inner ring, operating bandwidth can be enhanced to cover closely spaced commercial frequency bands in a single band. Thereby the mutual coupling between the closely spaced resonators for multiple bands can be minimized. The proposed design is flexible enough to tune the desired resonance frequency by changing the length of the individual ring resonators. The design concept has been formulated using linear polynomial regression (LPR) techniques and validated through proper measurement of the fabricated prototype. This FSS can be used as a mobile back cover to protect mobile users from harmful radiations.
Citation
Gouri Shankar Paul, Kaushik Mandal, Juin Acharjee, and Partha Pratim Sarkar, "Reduction of Mobile Phone Radiation Exposure Using Multi-Stopband Frequency Selective Surface," Progress In Electromagnetics Research M, Vol. 83, 9-18, 2019.
doi:10.2528/PIERM19041401
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Barton, J. H., C. R. Garcia, E. A. Berry, R. Salas, and R. C. Rumpf, "3-D printed all-dielectric frequency selective surface with large bandwidth and field of view," IEEE Trans. Antennas Propag., Vol. 63, 1032-1039, 2015.
doi:10.1109/TAP.2015.2388541

3. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Wideband near-field correction of a fabry-perot resonator antenna," IEEE Trans. Antennas Propag., Vol. 67, 1975-1980, 2019.
doi:10.1109/TAP.2019.2891230

4. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," Journal of Applied Physics, Vol. 124, 234901-234911, 2018.
doi:10.1063/1.5049204

5. Mackay, A., B. Sanz-Izquierdo, and E. A. Parker, "Evolution of frequency selective surfaces," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 2, 1-7, 2014.

6. Nair, R. U. and R. M. Jha, "Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives antenna applications corner," Antennas Propag. Mag., Vol. 56, No. 4, 276-298, 2014.
doi:10.1109/MAP.2014.6931715

7. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3119-3125, Oct. 2009.
doi:10.1109/TAP.2009.2028601

8. Zahirjoozdani, M., M. Khalajamirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, No. 9, 767-768, 2016.
doi:10.1049/el.2016.0336

9. Hiranandani, M. A., A. B. Yakovlev, and A. A. Kishk, "Artificial magnetic conductors realised by frequency-selective surfaces on a grounded dielectric slab for antenna applications," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 153, 487-493, 2006.
doi:10.1049/ip-map:20050156

10. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Trans. Antennas Propag., Vol. 67, 1916-1921, 2019.
doi:10.1109/TAP.2019.2891232

11. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 912-915, 2017.
doi:10.1109/LAWP.2016.2614498

12. Zhu, D. Z., P. L. Werner, and D. H. Werner, "Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm," IEEE Trans. Antennas Propag., Vol. 65, 7137-7149, 2017.
doi:10.1109/TAP.2017.2766660

13. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and B. A. Zeb, "Multi-objective particle swarm optimization for the realization of a low profile bandpass frequency selective surface," International Symposium on Antennas and Propagation (ISAP), Hobart, TAS, Australia, Nov. 9-12, 2015.

14. Yan, M., S. Qu, J. Wang, and H. Zhou, "A miniaturized dual-band FSS with stable resonant frequencies of 2.4 GHz/5 GHz for WLAN applications," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 895-898, 2014.
doi:10.1109/LAWP.2014.2320931

15. Rahmati, B. and H. R. Hassani, "Multiband metallic frequency selective surface with wide range of band ratio," IEEE Trans. Antennas Propag., Vol. 63, 3747-3753, 2015.
doi:10.1109/TAP.2015.2438340

16. Döken, B. and M. Kartal, "Easily optimizable dual-band frequency selective surface design," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 2979-2982, 2017.
doi:10.1109/LAWP.2017.2756118

17. Dai, X.-W. and T. Zhou, "Dual-band reflect array with crossed-dipole elements for GSM and LTE applications," AEU - International Journal of Electronics and Communications, Vol. 70, 605-610, 2016.
doi:10.1016/j.aeue.2016.01.016

18. Bagci, F., C. Mulazimoglu, S. Can, E. Karakaya, A. Egemen Yilmaz, and B. Akaoglu, "A glass based dual band frequency selective surface for protecting systems against WLAN signals," AEU - International Journal of Electronics and Communications, Vol. 82, 426-434, 2017.
doi:10.1016/j.aeue.2017.10.018

19. Bashiri, M., C. Ghobadi, J. Nourinia, and M. Majidzadeh, "WiMAX, WLAN, and X-band filtering mechanism: Simple-structured triple-band frequency selective surface," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 3245-3248, 2017.
doi:10.1109/LAWP.2017.2771265

20. Kartal, M., J. J. Golezani, and B. Doken, "A triple band frequency selective surface design for GSM systems by utilizing a novel synthetic resonator," IEEE Trans. Antennas Propag., Vol. 65, 2724-2727, 2017.
doi:10.1109/TAP.2017.2670230

21. Yang, L. and L. Guizhen, "The research on biological effects of mobile phone radiation to human body," Proceedings of 2008 Asia-Pacific Microwave Conference, 1-4, Macau, China, 2008.

22. Yaning, L., "Review on the investigation of the mechanism of the biological effects of the electromagnetic radiation," Basic Medical Sciences and Clinics, Vol. 20, No. 1, 21-23, 2000.

23. Da, R. and H. Yoo, "Application of a compact electromagnetic bandgap array in a phone case for suppression of mobile phone radiation exposure," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 2363-2372, 2018.

24. Natarajan, R., M. Kanagasabai, S. Baisakhiya, R. Sivasamy, S. Palaniswamy, and J. K. Pakkathillam, "A compact frequency selective surface with stable response for WLAN applications," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 718-720, 2013.
doi:10.1109/LAWP.2013.2264837

25. Wu, T. K., Frequency Selective Surface and Grid Array: Wiley series in Microwave and Optical Engineering, New York, Jul. 1995.

26. Chatterjee, S. and A. S. Hadi, Regression Analysis by Example, John Wiley & Sons, New Jersey, 2006.
doi:10.1002/0470055464