Vol. 81
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-27
W-Band Single-Pole Four-Throw Switch for Multichannel High Power Transceiver Chipset Design
By
Progress In Electromagnetics Research M, Vol. 81, 107-116, 2019
Abstract
In this paper, a W-band single-pole four-throw (SP4T) switch for multichannel high power transceiver chipset design is proposed based on a standard commercial 100 nm GaAs power pseudomorphic high electron mobility transistor (pHEMT) technology. The process used in this work is optimized for use in power amplifier (PA) design, resulting in larger drain electrode capacitance. In order to reduce the effect of large drain capacitance for switch design, a proper series capacitor is adopted. This capacitor can not only reduce the parasitic capacitance of the turn-off state transistor but also resonate with the parasitic inductance of the turn-on state transistor to improve the isolation. As known, the short stub is adopted to compensate the remaining parasitic capacitance. For verification, a prototype is fabricated and measured. The measured results are in good agreement with the simulated ones, and it shows that the fabricated SP4T switch achieves a bandwidth of 75 GHz-96 GHz, with an insertion loss and isolation about 4.8 dB and 28 dB, respectively. The fabricated switch also realizes a Pin1 dB about 22 dBm.
Citation
Linpu Li, Rong Qian, and Xiao-Wei Sun, "W-Band Single-Pole Four-Throw Switch for Multichannel High Power Transceiver Chipset Design," Progress In Electromagnetics Research M, Vol. 81, 107-116, 2019.
doi:10.2528/PIERM19042701
References

1. Reynolds, S., A. Valdes-Garcia, B. Floyd, T. Beukema, B. Gaucher, D. Liu, N. Hoivik, and B. Orner, "Second generation 60-GHz transceiver chipset supporting multiple modulations at Gb/s data rates (Invited)," IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Boston, MA, USA, Oct. 2007.

2. Khaddaj Mallat, N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60GHz direct conversion receivers," Progress In Electromagnetics Research, Vol. 84, 437-449, 2008.
doi:10.2528/PIER08081003

3. IEEE 802.15 working group for WPAN, [Online]. Available: http://www.ieee802.org/15/.

4. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Technique, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570

5. Ahmed, S. S., A. Schiessl, and L.-P. Schmidt, "Novel fully electronic active real-time millimeter-wave imaging system based on a planar multistatic sparse array," IEEE MTT-S International Microwave Symposium, MD, USA, Jun. 2011.

6. Li, S. Y., B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, "Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging," Progress In Electromagnetics Research, Vol. 124, 35-53, 2012.
doi:10.2528/PIER11112406

7. Liu, C.-Y., M.-H. Yang, and X.-W. Sun, "Towards robust human millimeter wave imaging inspection system in real time with deep learning," Progress In Electromagnetics Research, Vol. 161, 87-100, 2018.
doi:10.2528/PIER18012601

8. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Transactions on Microwave Theory and Technique, Vol. 60, No. 3, 845-860, Mar. 2012.
doi:10.1109/TMTT.2011.2178427

9. Giammello, V., E. Ragonese, and G. Palmisano, "Transmitter chipset for 24/77-GHz automotive radar sensors," IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, USA, May 2010.

10. Jeong, S.-H., H.-Y. Yu, J.-E. Lee, J.-N. Oh, and K.-H. Lee, "A multi-beam and multi-range radar with FMCW and digital beam forming for automotive applications," Progress In Electromagnetics Research, Vol. 124, 285-299, 2012.
doi:10.2528/PIER11110805

11. Jain, V., F. Tzeng, L. Zhou, and P. Heydari, "A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars," IEEE Journal of Solid-State Circuits, Vol. 44, No. 12, 3469-3485, Dec. 2009.
doi:10.1109/JSSC.2009.2032583

12. Steinhagen, F., H. Massler, W. H. Haydl, A. Hulsmann, and K. Kohler, "Coplanar W-band SPDT and SPTT resonated PIN diode switches," European Microwave Conference, Munich, Germany, Oct. 1999.

13. Song, P., R. L. Schmid, A. Ulusoy, and J. D. Cressler, "A high-power, lowloss w-band SPDT switch using SiGe PIN diodes," IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, USA, Jun. 2014.

14. Liu, H.-E., X. Lin, H.-Y. Chang, and Y.-C. Wang, "10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process," Asia-Pacific Microwave Conference, Japan, Nov. 2018.

15. Atesal, Y. A., B. Cetinoneri, and G. M. Rebeiz, "Low-loss 0.13-μm CMOS 50–70 GHz SPDT and SP4T switches," IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, Jun. 2009.

16. Meng, F.-Y., K.-X. Ma, K. S. Yeo, C. C. Boon, W. M. Lim, and S. Xu, "A 220-285 GHz SPDT switch in 65-nm CMOS using switchable resonator concept," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 4, 649-651, Jul. 2015.
doi:10.1109/TTHZ.2015.2436216

17. Shu, R. and Q. J. Gu, "Transformer-based v-band SPDT switch," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 278-280, Mar. 2017.
doi:10.1109/LMWC.2017.2661678

18. Thome, F. and O. Ambacher, "Highly-isolating and broadband single-pole double-throw switches for millimeter-wave applications up to 330 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1998-2009, Apr. 2018.
doi:10.1109/TMTT.2017.2777980

19. Zhao, L., W.-F. Liang, J.-Y. Zhou, and X. Jiang, "Compact 35-70 GHz SPDT switch with high isolation for high power application," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 485-487, May 2017.
doi:10.1109/LMWC.2017.2690834

20. Kallfass, I., S. Diebold, H. Massler, S. Koch, M. Seelmann-Eggebert, and A. Leuther, "Multiple-throw millimeter-wave FET switches for frequencies from 60 up to 120 GHz," European Microwave Conference, Amsterdam, Netherlands, Oct. 2008.

21. Margomenos, A., A. Kurdoghlian, M. Micovic, K. Shinohara, H. Moyer, D. C. Regan, R. M. Grabar, C. McGuire, M. D. Wetzel, and D. H. Chow, "W-band GaN receiver components utilizing highly scaled, next generation GaN device technology," IEEE Compound Semiconductor Integrated Circuit Symposium, La Jolla, CA, USA, Oct. 2014.

22. Adabi, E. and A. M. Niknejad, "A mm-wave transformer basedtransmit/receive switch in 90 nm CMOS technology," European Microwave Conference, Rome, Italy, Oct. 2009.

23. Chou, C.-C., S.-C. Huang, W.-C. Lai, H.-C. Kuo, and H.-R. Chuang, "Design of w-band high-isolation T/R switch," European Microwave Conference, Paris, France, Sep. 2015.

24. Zhou, P.-G., H.-Y Dong, Z.-G. Peng, J.-X. Chen, D.-B. Hou, P.-P. Yan, Y. Xiang, and W. Hong, "A w-band low loss, high power SPDT switch using reverse saturated 0.13 μm SiGe HBTs," IEEE International Symposium on Radio-Frequency Integration Technology, Melbourne, VIC, Australia, Aug. 2018.

25. Schmid, R. L., P. Song, C. T. Coen, A. Ulusoy, and J. D. Cressler, "On the analysis and design of low-loss single-pole double-throw w-band switches utilizing saturated SiGe HBTs," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 11, 2755-2767, Nov. 2014.
doi:10.1109/TMTT.2014.2354017