Vol. 83
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-22
An Omnidirectional Resonator for Wireless Power Transfer
By
Progress In Electromagnetics Research M, Vol. 83, 63-71, 2019
Abstract
Angular misalignment is an issue for many potential wireless power transfer (WPT) applications. This paper proposes a resonator as an effort to solve this issue. In the beginning, this paper gives an example of quantitative coupling analysis on angular misalignments. Then, it proposes an omnidirectional resonator for electromagnetic coupling WPT system. The proposed resonator is based on the structure of a regular polyhedron. It is constructed of four planar spiral resonators arranged as a regular tetrahedron. The coupling between the proposed resonator and a planar spiral resonator is verified. Both the simulated and measured results show that the coupling coefficient can be kept at a certain level when the omnidirectional resonator rotates around all x, y, and z axes regardless of the orientation of the planar spiral resonator respect to the omnidirectional resonator.
Citation
Yangjun Zhang, and Masaki Obata, "An Omnidirectional Resonator for Wireless Power Transfer," Progress In Electromagnetics Research M, Vol. 83, 63-71, 2019.
doi:10.2528/PIERM19050101
References

1. Tesla, N., "Transmission of electrical energy without wire," Elect. World Eng., Mar. 5, 1904, Online Available: ww.tfcbooks.com/tesla/.

2. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, Jul. 2007.
doi:10.1126/science.1143254

3. Shonohara, N., Wireless Power Transfer via Radiowaves, ISTE Ltd and John Wiley & Sons, Inc., 2014.

4. Awai, I., "Magnetic resonant wireless power transfer," Nikkei Electronics, 2011 (in Japanese).

5. Ohira, T., "Maximum available efficiency formulation based on a black-box model of linear two port power transfer systems," IEICE Electronics Express, ELEX, Vol. 11, No. 13, 1-6, #20140448, Jun. 2014.

6. Zhang, J., X. Yuan, C. Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780

7. Tierney, B. B. and A. Grbic, "Design of self-matched planar loop resonators for wireless nonradiative power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 909-919, 2014.
doi:10.1109/TMTT.2014.2303940

8. Jonah, O., S. V. Georgakopoulos, and M. M. Tentzeris, "Orientation insensitive power transfer by magnetic resonance for mobile devices," Proc. IEEE Wireless Power Transfer, Vol. 15/16, 5-8, Perugia, Italy, 2013.

9. Ng, W. M., C. Zhang, D. Lin, and S. R. Hui, "Two- and three-dimensional omnidirectional wireless power transfer," IEEE Transactions on Power Electronics, Vol. 29, No. 9, 4470-4474, 2014.
doi:10.1109/TPEL.2014.2300866

10. Zhang, C., D. Lin, and S. Y. Hui, "Basic control principles of omnidirectional wireless power transfer," IEEE Trans. Power Electron., Vol. 31, No. 7, 5215-5227, Jul. 2016.

11. Lin, D., C. Zhang, and S. Y. Ron Hui, "Mathematic analysis of omnidirectional wireless power transfer - Part-II three-dimensional systems," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 613-624, 2017.
doi:10.1109/TPEL.2016.2523506

12. Pacini, A., F. Benassi, D. Masotti, and A. Costanzo, "Design of a miniaturized omni-directional RF-to-dc IR-WPT," 2018 IEEE Wireless Power Transfer Conference (WPTC), 1-4, 2018.

13. Nam, H.-V. and C. Seo, "Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1358-1366, 2018.
doi:10.1109/TIE.2017.2733470

14. Han, W., K. T. Chau, C. Jiang, W. Liu, and W. H. Lam, "Design and analysis of quasi-omnidirectional dynamic wireless power transfer for fly-and-charge," IEEE Transactions on Magnetics, Vol. 55, No. 7, doi: 10.1109/TMAG.2019.2895716, 2019.

15. Chabalko, M. J. and A. P. Sample, "Three-dimensional charging via multimode resonant cavity enabled wireless power transfer," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6163-6173, 2015.
doi:10.1109/TPEL.2015.2440914

16. Inada, Y., T. Kawajiri, U. Takeda, and H. Ishikuro, "Arbitrary magnetic field control technique by multi-coil transmitter voltage phase shifting for omni-directional free-positioning magnetic resonance wireless power delivery," 48th European Microwave Conference (EuMC), 186-189, 2018.

17. Zhang, Y., T. Yoshikawa, and T. Kitahara, "Magnetic and electric coupling analysis for angular misalignment of spiral resonators in WPT systems," Progress In Electromagnetics Research M, Vol. 76, 1-8, 2018.

18. Awai, I., "New expressions for coupling coefficient between resonators," IEICE Trans. Electron., Vol. 88C, No. 12, 2295-2301, Dec. 2005.
doi:10.1093/ietele/e88-c.12.2295

19. Awai, I., S. Iwamujra, H. Kubo, and A. Sanada, "Separation of coupling coefficient between resonators into electric and magnetic contributions," IEICE, Vol. 88-C, No. 12, 1033-1039, 2005 (in Japanese).

20. Zhang, Y., T. Yoshikawa, and I. Awai, "Analysis of electric and magnetic coupling components for spiral resonators used in wireless power transfer," 2014 Asia-Pacific Microwave Conference, 1366-1368, 2014.

21. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619