Vol. 83
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-14
A Small Cost-Effective Super Ultra-Wideband Microstrip Antenna with Variable Band-Notch Filtering and Improved Radiation Pattern with 5G/IoT Applications
By
Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019
Abstract
In this work, a new design of small microstrip antenna with variable band-notched filtering characteristic for super ultra-wideband (UWB) applications including 5G/IoT networks is presented. In the proposed structure by creating steps with optimized appropriate sizes and angles in the lower edges of the quasi-square patch antenna and by a new technique of modifying the ground plane, more efficient radiation patterns and characteristic impedance are achieved. Moreover, the omnidirection allow cross-polarized H-plane radiation patterns are obtained infrequency band of 3-11 GHz. Also, its radiation patterns are improved between 11 and 14.5 GHz and have better performance especially with tuning capacitors between 14.5 and 20 GHz. In addition, its frequency bandwidth with VSWR<2 is from 3 GHz to 50 GHz which covers 5G networks and both ultra-wideband (UWB) and super wideband (SWB) communications. A rectangular slot on the patch is used to create an integrated band-notch filter in the structure to avoid interference with other wireless systems like wireless local area networks (WLANs), and this specification can be activated or deactivated by a PIN diode. In addition, the center frequency of the filter can be tuned by just a varactor diode or a variable capacitor and/or by changing the position of the capacitors in frequency range of about 3.5-6 GHz, which rejects interference of all WLANs and even lower and upper bands of them and nulls in the radiation patterns can be changed especially in upper bands as well. The final structure simulation results are in good agreement with measurement ones.
Citation
Hamid Reza Dalili Oskouei, Amir Reza Dastkhosh, Alireza Mirtaheri, and Mehdi Naseh, "A Small Cost-Effective Super Ultra-Wideband Microstrip Antenna with Variable Band-Notch Filtering and Improved Radiation Pattern with 5G/IoT Applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
doi:10.2528/PIERM19051802
References

1., First Report and Order in the matter of Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems, Released by Federal Communications Commission, ET-Docket 98-153, 2002.

2. Liu, L.-L., et al. "A compact band-notch ultra-wideband antenna," 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), IEEE, 2017.
doi:10.14569/IJACSA.2017.080753

3. Ali, J., et al. "Ultra-wideband antenna design for GPR applications: A review," International Journal of Advanced Computer Science and Applications, Vol. 8, No. 7, 392-400, 2017.

4. Awais, Q., et al. "A novel dual ultrawideband CPW-fed printed antenna for internet of things (IoT) applications," Wireless Communications and Mobile Computing, Vol. 2018, 2018.

5. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, Vol. 2017, 2017.

6. Ahmed, F., N. Hasan, and M. H. M. Chowdhury, "A compact low-profile ultra wideband antenna for biomedical applications," International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, 2017.

7. Franchina, V., et al. "A UWB antenna for X-band automotive applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 2016.
doi:10.1002/mop.31075

8. Kundu, S. and S. K. Jana, "Leaf-shaped CPW-fed UWB antenna with triple notch bands for ground penetrating radar applications," Microwave and Optical Technology Letters, Vol. 60, No. 4, 930-936, 2018.

9. Microwave Journal, Vol. 62, No. 3, Mar. 2019.
doi:10.1002/mop.28270

10. Kazim, J., A. Bibi, M. Rauf, M. Tariq, and O. Owais, "A compact planner dual-band-notched monopole antenna for UWB application," Microw. Opt. Tecnol. Lett., Vol. 56, No. 5, 1095-1097, Mar. 2014, doi: 10.1002/mop.28270.
doi:10.1109/LAWP.2010.2049633

11. Liu, H.-W., C.-H. Ku, T.-S. Wang, and C.-F. Yang, "Compact monopole antenna with band-notched characteristic for UWB application," IEEE Antennas. Wirel. Propag. Lett., Vol. 9, 397-400, May 2010, doi: 10.1109/LAWP.2010.2049633.

12. Liu, J., K. P. Esselle, S. G. Hay, and S. S. Zhong, "Compact super wide band asymmetric monopole antenna with dual-branch feed for bandwidth enhancement," Electron. Lett., Vol. 49, No. 8, 2013.
doi:10.1007/s00521-016-2457-7

13. Singh, U. and R. Salgotra, "Synthesis of linear antenna array using flower pollination algorithm," Neural Computing and Applications, Vol. 29, No. 2, 435-445, 2018.

14. Gevorkyan, A. V., T. Yu Privalova, and Yu V. Yukhanov, "Radiation characteristics of the low profile dipole antenna," 2018 Progress In Electromagnetics Research Symposium (PIERS - Toyama), 1621-1625, Japan, Aug. 1–4, 2018.

15. Li, W. T., X. W. Shi, and Y. Q. Hey, "Novel planar UWB monopole antenna with triple band-notched characteristics," IEEE Antennas. Wirel. Propag. Lett., Vol. 8, 1094-1098, Oct. 2009, doi: 10.1109/LAWP.2009.2033449J.
doi:10.1109/TAP.2007.893408

16. Ray, K. P. and Y. Ranga, "Ultra wideband printed elliptical monopole antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1189-1192, 2007.
doi:10.1109/LAWP.2013.2277591

17. Gao, P., L. Xiong, J. Dai, S. He, and Y. Zheng, "Compact printed wide-slot UWB antenna with 3.5/5.5-GHz dual band-notched characteristics," IEEE Antennas. Wirel. Propag. Lett., Vol. 12, 983-986, 2013.
doi:10.1049/iet-map.2013.0235

18. Choukiker, Y. K. and S. K. Behera, "Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics," IET Microw. Antennas Propag., Vol. 8, No. 7, 506-512, May 2014, doi: 10.1049/iet-map.2013.0235.
doi:10.1049/el.2010.3368

19. Kelly, J. R., P. S. Hall, P. Jardner, and F. Ghanem, "Integrated narrow/band-notched UWB antenna," Electron. Lett., Vol. 46, No. 12, 814-816, Jun. 2010, doi: 10.1049/el.2010.3368.
doi:10.1109/LAWP.2014.2306812

20. Sarkare, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched," IEEE Antennas. Wirel. Propag. Lett., Vol. 13, 396-399, Feb. 2014, doi: 10.1109/LAWP.2014.2306812.
doi:10.1109/LMWC.2005.856834

21. Jung, J., W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 10, 703-705, Oct. 2005.

22. Heon, D. H., H. Y. Yang, and Y. K. Cho, "Tapered slot antenna with band-notched function for ultrawideband radios," IEEE Antennas. Wirel. Propag. Lett., Vol. 11, 682-685, 2012.
doi:10.1049/iet-map.2014.0326

23. Tripathi, S., A. Mohan, and S. Yadav, "Hexagonal fractal ultra wideband antenna using Koch geometry with bandwidth enhancement," IET Microw. Antennas Propag., Vol. 8, No. 15, 1445-1450, 2014.
doi:10.1109/LAWP.2012.2205658

24. Fereidoony, F., S. Chamaani, and A. Mirtaheri, "Systematic design of UWB monopole antennas with stable omnidirectional radiation pattern," IEEE Antennas. Wirel. Propag. Lett., Vol. 11, 752-755, 2012.

25. Lu, Y., Y. Huang, H. T. Chattha, and P. Cao, "Reducing ground-plane effects on UWB monopole antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 147-150, 2011.
doi:10.1109/MAP.2005.1608721

26. Ammann, M. J. and M. John, "Optimum design of the printed strip monopole," IEEE Antennas and Propagation Magazine, Vol. 47, No. 6, Dec. 2005.
doi:10.1049/el.2010.2839

27. Hu, Z. H., P. S. Hall, J. R. Kelly, and P. Gardner, "UWB pyramidal monopole antenna with wide tunable band-notched behavior," Electron. Lett., Vol. 46, No. 24, 1588-1590, 2010.
doi:10.1049/el:20071567

28. Antonino-Daviu, E., M. Cabedo-Fabres, M. Ferrando-Bataller, and A. V. Jamenez, "Active UWB antenna with tunable band-notched behavior," Electron. Lett., Vol. 43, No. 18, 959-960, 2007.
doi:10.1002/mop.24744

29. Jeong, W.-S., D.-Z. Kim, W.-G. Lim, and J. W. Yu, "Tunable bandnotch ultra wideband planar monopole antenna using varactor," Microw Opt. Technol. Lett., Vol. 51, No. 12, 2829-2832, 2009.
doi:10.1109/LAWP.2014.2332449

30. Aghdam, S. A., "A novel UWB monopole antenna with tunable notched behavior using varactor diode," IEEE Antennas. Wirel. Propag. Letters, Vol. 13, 1243-1246, 2014.
doi:10.1016/j.jksues.2015.12.003

31. Awad, N. M. and M. K. Abdelazeez, "Multislot microstrip antenna for ultra-wide band applications," Journal of King Saud University-Engineering Sciences, Vol. 30, No. 1, 38-45, 2018.
doi:10.22581/muet1982.1902.08

32. Khattak, M. I., et al. "Hexagonal printed monopole antenna with triple stop bands for UWB application," Mehran University Research Journal of Engineering and Technology, Vol. 38, No. 2, 335-340, 2019.

33. Li, B., Z.-H. Yan, and T.-L. Zhang, "Triple-band slot antenna with U-shaped open stub fed by asymmetric coplanar strip for WLAN/WiMAX applications," Progress In Electromagnetics Research, Vol. 37, 123-131, 2013.

34. Rahayu, Y. and I. R. Mustofa, "Design of 2×2 MIMO microstrip antenna rectangular patch array for 5G wireless communication network," 2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 2679-2683, Singapore, Nov. 19-22, 2017.
doi:10.2528/PIERC18101401

35. Khattak, M. I., et al. "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research, Vol. 89, 133-147, 2019.