Vol. 86
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-07
Energy Distribution Characteristics of Magnetically Coupled Resonant Wireless Power Transfer Systems Considering Four Basic Reactive Power Compensations
By
Progress In Electromagnetics Research M, Vol. 86, 1-16, 2019
Abstract
To realize the attractive Wifi-type magnetically coupled resonant (MCR) wireless power transfer (WPT) techniques, not only the optimization of power and efficiency but also the spatial energy distribution characteristics (EDCs) should be considered. In this paper, the EDCs of three two-coil systems including an alignment system and systems with an angular and lateral misalignment are explored by the Poynting vector, and unified expressions of the active power density (APD) and reactive power density (RPD) are provided. Also, it is found that the APD is mainly distributed in the transmission path, and the RPD is mainly composed of three parts. When the phase difference between the currents in the transmitter and receiver tends to be π/2, the APD increases, and RPD decreases. The active power through an arbitrary infinite plane which intersects the transmission path but does not intersect the coupler is found equal to the transferred active power of the system, which is consistent with the results obtained by the circuit theory. Furthermore, the directionality of the APD is determined, and the APD is utilized to explain the coupling impedance in circuit theory. Then four basic reactive power compensations are considered, and it is recommended to use heavy load for the system with parallel compensation on the secondary side. Finally, the theoretical analysis is verified by simulation and experiment. This paper provides a significant reference for the analysis and design of the MCR WPT system and the improvement of the electromagnetic environment around the system.
Citation
Wanlu Li, Quandi Wang, Jianwei Kang, and Yingcong Wang, "Energy Distribution Characteristics of Magnetically Coupled Resonant Wireless Power Transfer Systems Considering Four Basic Reactive Power Compensations," Progress In Electromagnetics Research M, Vol. 86, 1-16, 2019.
doi:10.2528/PIERM19071608
References

1. Li, S. and C. C. Mi, "Wireless power transfer for electric vehicle applica-tions," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 3, No. 1, 4-17, 2015.
doi:10.1109/JESTPE.2014.2319453

2. Sergeant, P. and A. V. D. Bossche, "Inductive coupler for contactless power transmission," IET Elect. Power Appl., Vol. 2, No. 1, 1-7, 2008.
doi:10.1049/iet-epa:20070059

3. Omer Onar, C., et al. "Oak ridge national laboratory wireless charging of electric vehicles — CRADA report," Tech. Rep., Oak Ridge National Lab., Oak Ridge, TN, USA, TM-2016-296, 2016.

4. Kim, J. W., H.-C. Son, D.-H. Kim, and Y.-J. Park, "Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV," IEEE Transactions on Consumer Electronics, Vol. 58, No. 3, 775-780, 2012.
doi:10.1109/TCE.2012.6311317

5. Choi, B., J. Nho, H. Cha, T. Ahn, and S. Choi, "Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device," IEEE Trans. Ind. Electron., Vol. 51, No. 1, 140-147, 2004.
doi:10.1109/TIE.2003.822039

6. Li, Q. and Y. C. Liang, "An inductive power transfer system with a high-Q resonant tank for mobile device charging," IEEE Trans. Power Electron., Vol. 30, No. 11, 6203-6212, 2015.
doi:10.1109/TPEL.2015.2424678

7. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "Stable and high efficiency wireless power transfer system for robotic capsule using a modified Helmholtz coil," IEEE Trans. Ind. Electron., Vol. 64, No. 2, 1113-1122, 2017.
doi:10.1109/TIE.2016.2614268

8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902

9. Simic, M., C. Bil, and V. Vojisavljevic, "Investigation in wireless power transmission for UAV charging," Procedia Comput. Sci., Vol. 60, 1846-1855, 2015.
doi:10.1016/j.procs.2015.08.295

10. Xu, J., Y. Zeng, and R. Zhang, "UAV-enabled wireless power transfer: Trajectory design and energy optimization," IEEE Trans. Wireless Commun., Vol. 17, No. 8, 5092-5106, 2018.
doi:10.1109/TWC.2018.2838134

11. Liu, H. Q., H. C. So, K. W. K. Lui, and F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 131, 267-282, 2009.
doi:10.2528/PIER09070802

12. Hong, Y. W. P., T. C. Hsu, and P. Chennakesavula, "Wireless power transfer for distributed estimation in wireless passive sensor networks," IEEE Trans. Signal Process., Vol. 64, No. 20, 5382-5395, 2016.
doi:10.1109/TSP.2016.2595491

13. Hui, S. Y. R., "Technical and safety challenges in emerging trends of near-field wireless power transfer industrial guidelines," IEEE Trans. Electromagn. Compat., Vol. 7, No. 1, 78-86, 2018.
doi:10.1109/MEMC.0.8339551

14. Lu, F., H. Zhang, H. Hofmann, and C. Mi, "A double-sided LC-compensation circuit for loosely coupled capacitive power transfer," IEEE Trans. Power Electron., Vol. 33, No. 2, 1633-1643, 2018.
doi:10.1109/TPEL.2017.2674688

15. Pinuela, M., D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, "Maximizing DC-to-load efficiency for inductive power transfer," IEEE Trans. Power Electron., Vol. 28, No. 5, 2437-2447, 2013.
doi:10.1109/TPEL.2012.2215887

16. Fan, Y., L. Li, S. Yu, C. Zhu, and C.-H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

17. Deng, Q. J., J. T. Liu, D. Czarkowski, W. S. Hu, and H. Zhou, "An inductive power transfer system supplied by a multiphase parallel inverter," IEEE Trans. Ind. Electron., Vol. 64, No. 9, 7039-7048, 2017.
doi:10.1109/TIE.2017.2686351

18. Hao, H., G. A. Covic, and J. T. Boys, "A parallel topology for inductive power transfer power supplies," IEEE Trans. Power Electron., Vol. 29, No. 3, 1140-1151, 2014.
doi:10.1109/TPEL.2013.2262714

19. Faria, J. B., "Poynting vector flow analysis for contactless energy transfer in magnetic systems," IEEE Trans. Power Electron., Vol. 27, No. 10, 4292-4300, 2012.
doi:10.1109/TPEL.2012.2191421

20. Liu, Y., A. P. Hu, and U. Madawala, "Determining the power distribution between two coupled coils based on Poynting vector analysis," IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, May 20–22, 2017.

21. Guo, Y. S., et al. "Poynting vector analysis for wireless power transfer between magnetically coupled coils with different loads," Sci. Rep., Vol. 7, No. 741, 1-6, 2017.

22. Jin, J.-M., Theory and Computation of Electromagnetic Fields, Wiley, Hoboken, 2010.
doi:10.1002/9780470874257

23. Kiani, M., U. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431

24. Zhang, B., R.-H. Huang, and X.-J. Shu, Principle of Wireless Power Transmission, Science Press, Beijing, 2018.