Vol. 94
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-11
Design and Analysis of a Novel Miniaturized Dual-Band Omnidirectional Antenna for WiFi Applications
By
Progress In Electromagnetics Research M, Vol. 94, 95-103, 2020
Abstract
In this article, a novel dual-band omnidirectional antenna for WiFi applications is presented and investigated. The proposed antenna is mainly composed of two pairs of half-wavelength dipoles with different lengths. It is fed by a microstrip balun, which provides a good impedance matching for desired dual-band operation. The dimension of the proposed antenna is only 50 mm × 10 mm × 1 mm (0.4λ0 × 0.08λ0 × 0.008λ0, and λ0 is the wavelength of 2.4 GHz). The performance study of this dual-band omnidirectional antenna with different geometric parameters has been conducted. The final design is fabricated and measured, and the results exhibit a good impedance bandwidth of approximately 19.2% for |S11| ≤ -10 dB ranging from 2.24 to 2.70 GHz centered at 2.4 GHz, and over 17.4% for |S11| ≤ -10 dB ranging from 4.73 to 5.6 GHz centered at 5.0 GHz. This antenna also has a stable gain of 2.09~2.87 dBi and omnidirectional radiation patterns over the whole operating band. Dual-band coverage, stable omnidirectional radiation performance, simple structure, and miniaturized dimension make this antenna an excellent candidate for WiFi applications.
Citation
Ya-Bing Yang, Fu-Shun Zhang, Yun-Qi Zhang, and Xu-Ping Li, "Design and Analysis of a Novel Miniaturized Dual-Band Omnidirectional Antenna for WiFi Applications," Progress In Electromagnetics Research M, Vol. 94, 95-103, 2020.
doi:10.2528/PIERM20050804
References

1. Chen, Z. N., X. Qing, T. S. P. See, and W. K. Toh, "Antennas forWiFi connectivity," Proceedings of the IEEE, Vol. 100, No. 7, 2322-2329, 2012.
doi:10.1109/JPROC.2012.2183830

2. Zhang, B.-C., C. Jin, and Z.-X. Shen, "Low-profile broadband absorber based on multimode resistor-embedded metallic strips," IEEE Trans. Microw. Theory Techn., Vol. 1, 1-9, 2019.

3. Lai, J., B. Feng, Q. Zeng, and S. Su, "A dual-band dual-polarized omnidirectional antenna for 2G/3G/LTE indoor system applications ," 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2018.

4. Wen, H., Y. Qi, Z. Weng, F. Li, and J. Fan, "A multiband dual-polarized omnidirectional antenna for 2G/3G/LTE applications ," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 2, 180-183, 2018.
doi:10.1109/LAWP.2017.2778761

5. Guo, D., K. He, Y. Zhang, and M. Song, "A multiband dual-polarized omnidirectional sntenna for indoor wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, 290-293, 2017.
doi:10.1109/LAWP.2016.2573840

6. He, Y., K. Ma, N. Yan, and H. Zhang, "Dual band monopole antenna using dubstrate integrated suspended line technology for WLAN application ," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2776-2779, 2017.
doi:10.1109/LAWP.2017.2745503

7. Liu, Y., X. Li, L. Yang, and Y. Liu, "A dual polarized dual band antenna with omnidirectional radiation patterns," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4259-4262, 2017.
doi:10.1109/TAP.2017.2708093

8. Hu, P. F., Y. M. Pan, K. W. Leung, and X. Y. Zhang, "Wide-/dual-band omnidirectional filtering dielectric resonator antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2622-2627, 2018.
doi:10.1109/TAP.2018.2809706

9. Buckley, J. L., K. G. McCarthy, L. Loizou, B. O’Flynn, and C. O’Mathuna, "A dual-ISM-band antenna of small size using a spiral structure with parasitic element," IEEE Antennas Wireless Propag. Lett., Vol. 15, 630-633, 2016.
doi:10.1109/LAWP.2015.2465831

10. Shi, W., Z. Qian, and W. Ni, "Dual-band stacked annular slot/patch antenna for omnidirectional radiation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 390-393, 2016.
doi:10.1109/LAWP.2015.2447280